首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A T Yeung  B K Jones  M Capraro    T Chu 《Nucleic acids research》1987,15(12):4957-4971
We have examined the interactions of UvrABC endonuclease with DNA containing the monoadducts of 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (TMP). The UvrA and UvrB proteins were found to form a stable complex on DNA that contains the psoralen monoadducts. Subsequent binding of UvrC protein to this complex activates the UvrABC endonuclease activity. As in the case of incision at pyrimidine dimers, a stable protein-DNA complex was observed after the incision events. For both 8-MOP and TMP, the UvrABC endonuclease incised the monoadduct-containing strand of DNA on the two sides of the monoadduct with 12 bases included between the two cuts. One incision was at the 8th phosphodiester bond on the 5' side of the modified base. The other incision was at the 5th phosphodiester bond 3' to the modified base. The UvrABC endonuclease incision data revealed that the reactivity of psoralens is 5'TpA greater than 5'ApT greater than 5'TpG.  相似文献   

2.
Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. UvrABC endonuclease, encoded by the UvrA, UvrB, and UvrC genes can incise DNA containing bulky nucleotide adducts and intrastrand cross-links. UvrA, UvrB, and UvrC were cloned from Bacillus caldotenax (Bca)and UvrC from Thermatoga maritima (Tma), and recombinant proteins were overexpressed in and purified from Escherichia coli. Incision activities of UvrABC composed of all Bca-derived subunits (UvrABC(Bca)) and an interspecies combination UvrABC composed of Bca-derived UvrA and UvrB and Tma-derived UvrC (UvrABC(Tma)) were compared on benoz[a]pyrene-7,8-dihyrodiol-9,10-epoxide (BPDE)-adducted substrates. Both UvrABC(Bca) and UvrABC(Tma) specifically incised both BPDE-adducted plasmid DNAs and site-specifically modified 50-bp oligonucleotides containing a single (+)-trans- or (+)-cis-BPDE adduct. Incision activity was maximal at 55-60 degrees C. However, UvrABC(Tma) was more robust than UvrABC(Bca) with 4-fold greater incision activity on BPDE-adducted oligonucleotides and 1.5-fold greater on [(3)H]BPDE-adducted plasmid DNAs. Remarkably, UvrABC(Bca) incised only at the eighth phosphodiester bond 5' to the BPDE-modified guanosine. In contrast, UvrABC(Tma) performed dual incision, cutting at both the fifth phosphodiester bond 3' and eighth phosphodiester bond 5' from BPDE-modified guanosine. BPDE adduct stereochemistry influenced incision activity, and cis adducts on oligonucleotide substrates were incised more efficiently than trans adducts by both UvrABC(Bca) and UvrABC(Tma). UvrAB-DNA complex formation was similar with (+)-trans- and (+)-cis-BPDE-adducted substrates, suggesting that UvrAB binds both adducts equally and that adduct configuration modifies UvrC recognition of the UvrAB-DNA complex. The dual incision capabilities and higher incision activity of UvrABC(Tma) make it a robust tool for DNA adduct studies.  相似文献   

3.
UvrABC incision of N-methylmitomycin A-DNA monoadducts and cross-links   总被引:6,自引:0,他引:6  
The Escherichia coli UvrABC endonuclease is a multisubunit enzyme that initiates the repair of a wide variety of DNA lesions in vivo by making dual incisions on a damaged strand at the eighth or ninth phosphodiester bond 5' and the fourth or fifth phosphodiester bond 3' to the modified base. It has been hypothesized that UvrABC is able to recognize a broad spectrum of lesions because it does not recognize the lesion per se but rather gross helical distortions that the lesion induces in the DNA. Several lesions have recently been studied which are thermal stabilizing and are not believed to distort the DNA grossly, including the CC-1065-N-3-adenine and anthramycin-N-2-guanine adducts. We have studied the activity of UvrABC in vitro on another thermal stabilizing and nondistortive adduct, N-methylmitomycin A (NMA), a bifunctional DNA-alkylating agent that reacts with guanine on the side facing the minor groove, yielding either monoadducts or interstrand cross-links. NMA adducts increase the thermal stability of DNA, and theoretical calculations indicate that NMA adducts do not grossly distort the DNA helix. Our results show that UvrABC makes incisions at the eighth phosphodiester bond 5' and the fifth phosphodiester bond 3' to an NMA monoadduct, consistent with the incision pattern observed for the majority of other lesions that are also recognized by UvrABC. DNA containing a site-specific NMA cross-link was also recognized and incised by UvrABC. The rate of incision of NMA cross-linked DNA was about 200-fold higher in supercoiled molecules than in relaxed molecules, whereas the rate of incision of DNA containing NMA monoadducts was stimulated approximately 2-fold by supercoiling. The signal for UvrABC recognition and incision of damaged DNA is discussed in relation to the ability of UvrABC to incise NMA adducts as well as other nondistortive lesions.  相似文献   

4.
A Snowden  Y W Kow  B Van Houten 《Biochemistry》1990,29(31):7251-7259
Using oligonucleotide synthesis, we demonstrate a rapid and efficient method for the construction of DNA duplexes containing defined DNA lesions at specific positions. These DNA lesions include apyrimidinic sites, reduced apyrimidinic sites, and base-damage analogues consisting of O-methyl- or O-benzylhydroxylamine-modified apyrimidinic sites. A 49 base pair DNA duplex containing these lesions was specifically incised by the UvrABC nuclease complex. The incision sites occurred predominantly at the eighth phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion. Multiple incisions were observed 3' to the lesion. The extent of DNA incisions was base-damage analogues greater than reduced apyrimidinic sites greater than apyrimidinic sites. Introduction of 3' or 5' nicks at the site of a base-damage analogue by treatment of these substrates with either endonuclease III or endonuclease IV reduced, but did not abolish, subsequent incision by the UvrABC complex, whereas introduction of a 3' nick at an abasic site increased the incision efficiency of the UvrABC complex. These data demonstrate a convergence of base and nucleotide excision repair pathways in the removal of specific base damages.  相似文献   

5.
Repair of psoralen and acetylaminofluorene DNA adducts by ABC excinuclease   总被引:17,自引:0,他引:17  
Escherichia coli UvrA, UvrB and UvrC proteins acting in concert remove the major ultraviolet light-induced photoproduct, the pyrimidine dimer, from DNA in the form of a 12 to 13-nucleotide long single-stranded fragment. In vivo data indicate that the UvrABC enzyme is also capable of removing other nucleotide diadducts as well as certain nucleotide monoadducts from DNA and initiating the repair process that leads to removal of interstrand crosslinks caused by some bifunctional chemical agents. We have determined the action mechanism of the enzyme on nucleotide monoadducts produced by 4'-hydroxymethyl-4,5',8-trimethylpsoralen and N-acetoxy-N-2-acetylaminofluorene. In both cases we find that the enzyme hydrolyzes the eighth phosphodiester bond 5' and the fifth phosphodiester bond 3' to the modified base. This cutting pattern is similar to that observed with diadduct substrate, the only difference being that while the enzyme incises the fourth or fifth phosphodiester bond 3' to the pyrimidine dimer it always hydrolyzes the fifth bond relative to monoadducts. Our results also suggest that ABC excinuclease cuts the same two phosphodiester bonds on both sides of a T whether that T has a psoralen monoadduct or is involved in psoralen-mediated interstrand crosslink.  相似文献   

6.
The Escherichia coli UvrABC endonuclease is capable of initiating the repair of a wide variety of DNA damages. To study the binding of the UvrAB complex to the DNA at the site of a lesion we have constructed a synthetic DNA fragment with a defined cis-diamminedichloroplatinum(II) (cis-Pt).GG adduct. The cis-Pt.GG is the major adduct after treatment of DNA with the antitumor agent cisplatin. Binding to the DNA at the site of the defined lesion was studied with DNase I and MPE.Fe(II) hydroxyl radical footprinting. The results indicate that the UvrAB complex binds to the convex side of the kink in the DNA caused by the cis-Pt.GG adduct. Concerted incisions of the damaged strand by the UvrABC endonuclease were at the 8th phosphodiester bond 5' to and at the 4th bond 3' of the adjacent guanines. An additional incision was found at the 15th phosphodiester bond 5' to the damaged site. This extra incision was stimulated by a high concentration of UvrC.  相似文献   

7.
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.  相似文献   

8.
Apurinic/apyrimidinic (AP) endonuclease (Ape1) is the major cellular enzyme responsible for repairing AP-sites in DNA. It can cleave the DNA phosphodiester backbone immediately 5(') to an AP-site. Ape1 also shows 3(')-phosphodiesterase activity, a 3(')-phosphatase activity, and an RNaseH activity. However, regarding its exonuclease activity, it remains controversial whether human Ape1 may possess a 3(')-5(') exonuclease activity. During the course of study to search for the major nuclease activity to double-stranded DNA in human leukemia cells, we purified a 37 kDa Mg(2+)-dependent exonuclease from cytosolic fraction of human leukemia U937 cells. Surprisingly, this exonuclease is Ape1. We demonstrated for the first time that Ape1 possesses a significant activity as major 3(')-5(') exonuclease in human leukemia cells. In addition, we also observed that translocation of cytoplasmic Ape1 into nucleus occurs during DNA damage.  相似文献   

9.
ABC excinuclease of Escherichia coli removes 6-4 photoproducts and pyrimidine dimers from DNA by making two single strand incisions, one 8 phosphodiester bonds 5' and another 4 or 5 phosphodiester bonds 3' to the lesion. We describe in this communication a method, which utilizes DNA photolyase from E. coli, pyrimidine dimer endonucleases from M. luteus and bacteriophage T4, and alkali hydrolysis, for analyzing the ABC excinuclease incision pattern corresponding to each of these photoproducts in a DNA fragment. On occasion, ABC excinuclease does not incise DNA exclusively 8 phosphodiester bonds 5' or 4 or 5 phosphodiester bonds 3' to the photoproduct. Both the nature of the adduct (6-4 photoproduct or pyrimidine dimer) and the sequence of neighboring nucleotides influence the incision pattern of ABC excinuclease. We show directly that photolyase stimulates the removal of pyrimidine dimers (but not 6-4 photoproducts) by the excinuclease. Also, photolyase does not repair CC pyrimidine dimers efficiently while it does repair TT or TC pyrimidine dimers.  相似文献   

10.
Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. Escherichia coli UvrABC endonuclease can incise DNA containing UV photoproducts and bulky chemical adducts. The limited stability of the E. coli UvrABC subunits leads to difficulty in estimating incision efficiency and quantitative adduct detection. To develop a more stable enzyme with greater utility for the detection of DNA adducts, thermoresistant UvrABC endonuclease was cloned from the eubacterium Bacillus caldotenax (Bca) and individual recombinant protein subunits were overexpressed in and purified from E. coli. Here, we show that Bca UvrC that had lost activity or specificity could be restored by dialysis against buffer containing 500 mM KCl and 20mM dithiothreitol. Our data indicate that UvrC solubility depended on high salt concentrations and UvrC nuclease activity and the specificity of incisions depended on the presence of reduced sulfhydryls. Optimal conditions for BCA UvrABC-specific cleavage of plasmid DNAs treated with [3H](+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) (1-5 lesions/plasmid) were developed. Preincubation of substrates with UvrA and UvrB enhanced incision efficiency on damaged substrates and decreased non-specific nuclease activity on undamaged substrates. Under optimal conditions for damaged plasmid incision, approximately 70% of adducts were incised in 1 nM plasmid DNA (2 BPDE adducts/5.4 kbp plasmid) with UvrA at 2.5 nM, UvrB at 62.5 nM, and UvrC at 25 nM. These results demonstrate the potential usefulness of the Bca UvrABC for monitoring the distribution of chemical carcinogen-induced lesions in DNA.  相似文献   

11.
Psoralens bind to DNA noncovalently and upon exposure to near UV (320-400 nm) light produce covalent adducts. Thymidine residues in DNA, especially those at 5'-TpA-3' sequences, are most susceptible to the photochemical reaction. This property of the reaction and the recent advances in oligonucleotide synthesis and separation has enabled us to construct DNA fragments containing psoralen adducts at a specific site. The octanucleotide 5'-TCGTAGCT-3' was photoreacted (in the presence of the complementary strand) with the synthetic psoralen 4'-hydroxymethyl-4,5',8-trimethylpsoralen to obtain oligonucleotides adducted via the furan or pyrone ring at the internal thymine. These modified octanucleotides were ligated to nonmodified oligonucleotides to obtain a 40-base pair DNA fragment containing a psoralen adduct at a central location. The modified fragment having the thymine-furan side 4'-hydroxymethyl-4,5',8-trimethylpsoralen adduct was irradiated with 360 nm of light to produce an interstrand cross-link, and this cross-linked DNA was purified to homogeneity. These uniquely modified DNAs were used as substrates for Escherichia coli ABC excinuclease to determine its incision mechanism unambiguously and to determine the contact sites of the enzyme. ABC excinuclease mediates the cleavage of the 8th and 5th phosphodiester bonds 5' and 3', respectively, to psoralen monoadducts, and the 9th (5') and 3rd (3') phosphodiester bonds to the furan-side thymine of the cross-link. Preliminary DNaseI footprinting studies show that ABC excinuclease protects the whole 40-base pair fragment from DNaseI, and binding of the A and B subunits to the furan side-monoadducted substrate produces two hypersensitive phosphodiester bonds in the vicinity of the 5' incision site of ABC excinuclease.  相似文献   

12.
Nazimiec M  Lee CS  Tang YL  Ye X  Case R  Tang M 《Biochemistry》2001,40(37):11073-11081
The uvrA, uvrB, and uvrC genes of Escherichia coli control the initial steps of nucleotide excision repair. The uvrC gene product is involved in at least one of the dual incisions produced by the UvrABC complex. Using single-stranded (ss) DNA affinity chromatography, we have separated two forms of UvrC from both wild-type E. coli cells and overproducing cells. UvrCI elutes at 0.4 M KCl, and UvrCII elutes at 0.6 M KCl. In general, both forms, in the presence of UvrA and UvrB, actively incise UV-irradiated and CC-1065-modified DNA in the same fashion; i.e., they incise six to eight nucleotides 5' to and three to five nucleotides 3' to a photoproduct or a CC-1065-N3-adenine adduct. They produce different incisions, however, at a CC-1065-N3-adenine adduct in the sequence 5'-GATTACG- present in the MspI-BstNI 117 bp fragment of M13mp1. UvrABCI incises at both the 5' and 3' sides of the adduct (UvrABCI cut), while UvrABCII incises only at the 5' side (UvrABCII cut). Mixing UvrCI and UvrCII results in both UvrABCI and UvrABCII cuts, and the levels of these two types of cutting are proportional to the amount of UvrCI and UvrCII. DNase I footprints of the MspI-BstNI 117 bp DNA fragment containing a site-directed CC-1065-adenine adduct at the 5'-GATTACG- site show that UvrCII, but not UvrCI, binds to the adduct site. Furthermore, the pattern of DNase I footprints induced by UvrCII binding differs from the pattern of the footprints induced by UvrA, UvrAB, and UvrABCI binding. Interestingly, while the presence of unirradiated DNA enhances the efficiency of UvrABCII in incising UV-irradiated DNA, it does not enhance UvrABCII incision of the CC-1065-N3-adenine adduct formed at 5'-GATTACG-. These results show that two different forms of UvrC differ in DNA binding properties as well as incision modes at some kinds of DNA damage.  相似文献   

13.
Removal of interstrand cross-linked from DNA was examined in Escherichia coli permeabilized by treatment with toluene. Under these conditions, the reaction requires ATP and Mg2+, and the mechanism appears to be similar to that occurring in whole cells. Under optimum conditions, the rate constant was 0.06 min-1. Genetical, physical, and biochemical analysis of the repair process suggest the following mechanism. In an ATP-dependent reaction, the uvrA and uvrB gene products cleave a phosphodiester bond on the 5' side of one arm of the cross-link, producing a 3'-OH terminus. Subsequently, DNA polymerase I (5'-3' exonuclease activity) makes a second strand cut on the 3' side of the cross-link in the same DNA strand, completing removal of the covalent link between complementary strands. The second reaction did not occur in a uvrD- strain, which had normal levels of DNA polymerizing activity. The uvrD gene may regulate the specificity or activity of the 5'-3' exonuclease of DNA polymerase I in vivo.  相似文献   

14.
Incision of damaged DNA by the Escherichia coli UvrABC endonuclease requires the UvrA, UvrB, and UvrC proteins as well as ATP hydrolysis. This incision reaction can be divided into three steps: site recognition, preincision complex formation, and incision. UvrAB is able to execute the first two steps in the reaction while the addition of UvrC is required for the incision of DNA. This incision reaction does not require ATP hydrolysis and results in the formation of a tight UvrABC post-incision complex and the generation of an oligomer of approximately 12 nucleotides. At high UvrABC concentrations the specificity of the incision for damaged DNA is decreased and significant incision of undamaged DNA occurs. Analogous to damage specific incision, this type of incision leads to generation of an oligonucleotide, but in this case the size is approximately 9 nucleotides in length. Further evidence shows that the combination of UvrB and UvrC proteins can generate a significant amount of a similar size product on undamaged DNA. In addition, the UvrC protein alone can generate a small amount of the same product. Immunological characterization of the weak nuclease activity seen with UvrC indicates that the activity is very tightly associated with the purified UvrC protein.  相似文献   

15.
Mitomycin C induces both MC-mono-dG and cross-linked dG-adducts in vivo. Interstrand cross-linked (ICL) dG-MC-dG-DNA adducts can prevent strand separation. In Escherichia coli cells, UvrABC repairs ICL lesions that cause DNA bending. The mechanisms and consequences of NER of ICL dG-MC-dG lesions that do not induce DNA bending remain unclear. Using DNA fragments containing a MC-mono-dG or an ICL dG-MC-dG adduct, we found (i) UvrABC incises only at the strand containing MC-mono-dG adducts; (ii) UvrABC makes three types of incisions on an ICL dG-MC-dG adduct: type 1, a single 5′ incision on 1 strand and a 3′ incision on the other; type 2, dual incisions on 1 strand and a single incision on the other; and type 3, dual incisions on both strands; and (iii) the cutting kinetics of type 3 is significantly faster than type 1 and type 2, and all of 3 types of cutting result in producing DSB. We found that UvrA, UvrA + UvrB and UvrA + UvrB + UvrC bind to MC-modified DNA specifically, and we did not detect any UvrB- and UvrB + UvrC–DNA complexes. Our findings challenge the current UvrABC incision model. We propose that DSBs resulted from NER of ICL dG-MC-dG adducts contribute to MC antitumor activity and mutations.  相似文献   

16.
Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.  相似文献   

17.
V Bailly  W G Verly 《FEBS letters》1984,178(2):223-227
The 3' AP endonucleases (class I) are said to hydrolyze the phosphodiester bond 3' to AP sites yielding 3'-OH and 5'-phosphate ends; on the other hand, the resulting 3' terminal AP site is not removed by the 3'-5' exonuclease activity of the Klenow fragment [1]. We show that AP sites in DNA are easily removed by the 3'-5' exonuclease activity of the Klenow fragment and that they are excised as deoxyribose-5-phosphate. It is suggested that the 3' AP endonucleases are perhaps not the hydrolases they are supposed to be.  相似文献   

18.
The early steps of excision repair of cyclobutane pyrimidine dimers are investigated. It is demonstrated that the apurinic/apyrimidinic endonuclease associated with the Micrococcus luteus uv-specific endonuclease cleaves the phosphodiester bond on the 3' side of the deoxyribose leaving a 3' hydroxy terminus and a 5' phosphoryl terminus. This nick is not a substrate for T4 polynucleotide ligase. The 3' base-free deoxyribose terminus is not a substrate for either the polymerase or the 3' to 5' exonuclease activities of Escherichia coli DNA polymerase I. However, the 3' terminus of the nick is converted to a substrate for DNA polymerization by the action of a 5' apurinic/apyrimidinic endonuclease. A three-step model for the incision step of excision repair of cyclobutane pyrimidine dimers is presented.  相似文献   

19.
The UvrABC nuclease system from Escherichia coli removes DNA damages induced by a wide range of chemical carcinogens with variable efficiencies. The interactions with UvrABC proteins of the following three lesions site-specifically positioned in DNA, and of known conformations, were investigated: (i) adducts derived from the binding of the (-)-(7S,8R,9R,10S) enantiomer of 7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE] by cis-covalent addition to N(2)-2'-deoxyguanosine [(-)-cis-anti-BP-N(2)-dG], (ii) an adduct derived from the binding of the (+)-(1R,2S,3S,4R) enantiomer of 1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-5-methylchrysene [(+)-anti-5-MeCDE] by trans addition to N(2)-2'-deoxyguanosine [(+)-trans-anti-MC-N(2)-dG], and (iii) a C8-2'-deoxyguanosine adduct (C8-AP-dG) formed by reductively activated 1-nitropyrene (1-NP). The influence of these three different adducts on UvrA binding affinities, formation of UvrB-DNA complexes by quantitative gel mobility shift analyses, and the rates of UvrABC incision were investigated. The binding affinities of UvrA varied among the three adducts. UvrA bound to the DNA adduct (+)-trans-anti-MC-N(2)-dG with the highest affinity (K(d) = 17 +/- 2 nM) and to the DNA containing C8-AP-dG with the least affinity (K(d) = 28 +/- 1 nM). The extent of complex formation with UvrB was also the lowest with the C8-AP-dG adduct. 5' Incisions occurred at the eighth phosphate from the modified guanine. The major 3' incision site corresponded to the fifth phosphodiester bond for all three adducts. However, additional 3' incisions were observed at the fourth and sixth phosphates in the case of the C8-AP-dG adduct, whereas in the case of the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG lesions additional 3' cleavage occurred at the sixth and seventh phosphodiester bonds. Both the initial rate and the extent of 5' and 3' incisions revealed that C8-AP-dG was repaired less efficiently in comparison to the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG containing DNA adducts. Our study showed that UvrA recognizes conformational changes induced by structurally different lesions and that in certain cases the binding affinities of UvrA and UvrB can be correlated with the incision rates. The size of the bubble formed around the damaged site with mismatched bases also appears to influence the incision rates. A particularly noteworthy finding in this study is that UvrABC repair of a substrate with no base opposite C8-AP-dG was quite inefficient as compared to the same adduct with a C opposite it. These findings are discussed in terms of the available NMR solution structures.  相似文献   

20.
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a pentapyrimidine target site 5'-CCCTTp downward arrow in duplex DNA. By introducing single 2'-5' phosphodiesters in lieu of a standard 3'-5' phosphodiester linkage, we illuminate the contributions of phosphodiester connectivity to DNA transesterification. We find that the DNA cleavage reaction was slowed by more than six orders of magnitude when a 2'-5' linkage was present at the scissile phosphodiester (CCCTT(2')p downward arrow(5')A). Thus, vaccinia topoisomerase is unable to form a DNA-(2'-phosphotyrosyl)-enzyme intermediate. We hypothesize that the altered geometry of the 2'-5' phosphodiester limits the ability of the tyrosine nucleophile to attain a requisite, presumably apical orientation with respect to the 5'-OH leaving group. A 2'-5' phosphodiester located to the 3' side of the cleavage site (CCCTTp downward arrowN(2')p(5')N) reduced the rate of transesterification by a factor of 500. In contrast, 2'-5' phosphodiesters at four other sites in the scissile strand (TpCGCCCTpT downward arrowATpTpC) and five positions in the nonscissile strand (3'-GGGpApApTpApA) had no effect on transesterification rate. The DNAs containing 2'-5' phosphodiesters were protected from digestion by exonuclease III. We found that exonuclease III was consistently arrested at positions 1 and 2 nucleotides prior to the encounter of its active site with the modified 2'-5' phosphodiester and that the 2'-5' linkage itself was poorly hydrolyzed by exonuclease III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号