首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrolysis of phosphatidylcholine by phospholipase A2 of synaptic membranes i n Tris-CHl buffer was stimulated by cyclic AMP, cyclic GMP, cyclic CMP, cyclic UMP and adenosine (0.1 mm). In the presence of 1 mm-NaF and cofactors, the same cyclic nucleotides and adenosine (10 mm) stimulated the incorporation of added oleate into the choline glycerophospholipids of synaptic membranes. Cyclic AMP and noradrenaline stimulated the incorporation of added oleate into position 2 of choline glycerophospholipid. Stimulation of net acylation was increased by preincubation in conditions which stimulated hydrolysis of phosphatidylcholine. Cyclic AMP only slightly stimulated the transfer of oleate from oleoyl-CoA into choline glycerophospholipid. The optimum concentration of CaCl2 for the stimulation of hydrolysis by phospholipase A2 by cyclic AMP was 1 mum. Stimulation of the incorporation of added oleate was maximal in the CaCl2 concentration range 1 mum-1mm. MgCl2 also enhanced stimulations, maximum effects being obtained with concentrations of 10 mum and 0.5 mm for hydrolysis by phospholipase A2 and incorporation of added oleate respectively. ATP enhanced the stimulation of incorporation of oleate but had no effect on the cyclic nucleotide stimulation of hydrolysis of added phosphatidylcholine by phospholipase A2. Adenosine, guanosine, ADP and 5'-AMP (all at 1 mm) inhibited the stimulation of incorporation of oleate by cyclic nucleotides and inhibited the transfer of oleate from oleoyl-CoA to phospholipid. They did not inhibit the stimulation of hydrolysis of added phosphatidylcholine (by phospholipase A2) by cyclic nucleotides, but inhibited the stimulation by noradrenaline, acetylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine) and histamine. Preincubation of synaptic membranes in the water or buffer increased the net activity of phospholipase A2. Preincubation with a mixture of ATP and MgCl2 increased the initial rate of acylation of membrane lipid.  相似文献   

2.
Rapid activation of phospholipase D (PLD) in response to cell stimulation was recently demonstrated in many systems, raising the hypothesis that PLD participates in transduction of extracellular signals across the plasma membrane. In the present study, we describe the identification of a neutral PLD activity in purified rat brain synaptic plasma membranes, and the in vitro conditions required to assay its catalytic activity with exogenous [3H]phosphatidylcholine as substrate. Production of [3H]phosphatidic acid, the natural lipid product of PLD and of [3H]phosphatidylethanol, catalyzed by PLD in the presence of ethanol via transphosphatidylation, were measured. The synaptic membrane PLD exhibited its highest activity at pH 7.2 and was thus defined as a neutral PLD. Enzyme activity was absolutely dependent on the presence of sodium oleate and was strongly activated by Mg2+ ions (at 1 mM). Ca2+ at concentrations up to 0.25 mM was as stimulatory as Mg2+, but at 2 mM it completely inhibited enzyme activity. Mg2+ extended the linear phase of PLD activity from 2 to 15 min, suggesting that it may stabilize the enzyme under our assay conditions. The production of [3H]phosphatidylethanol was a saturable function of ethanol concentration. Production of [3H] phosphatidic acid was inversely related to the concentration of ethanol and to the accumulation of phosphatidylethanol, indicating that the two phospholipids are indeed produced by the competing hydrolase and transferase activities of the same enzyme. beta,beta-Dimethylglutaric acid, utilized previously as a buffer in studies of rat brain PLD, inhibited enzyme activity at neutral pH but not at acidic pH. The properties of the neutral synaptic membrane PLD and its relationships with other in vitro, acid, and neutral PLD activities, as well as with the signal-dependent PLD detected in intact cells, are discussed.  相似文献   

3.
Certain observations reported previously from this laboratory have not proved reproducible. These are (1) the relatively rapid hydrolysis of added phosphatidylcholine by phospholipase A2 of tissue from the cerebral cortex of the guinea pig and (2) the stimulation by 10 micron-noradrenaline and by 1.0nM-cyclic AMP of the phospholipase A2-acylation system of isolated synaptic membranes.  相似文献   

4.
5.
6.
A procedure is described for the isolation of synaptic membrane fragments that retain such functionally important proteins as acetylcholine receptors, acetylcholinesterase, 3',5'-cyclic nucleotide phosphodiesterase, and (Na+ + K+)-ATPase. The method is based on the observation, made in brain slices, that junctional membranes are more resistant to phospholipase A2 attack than mitochondrial or plasma membranes. Hydrolysis by phospholipase A2 was controlled by addition of fatty acid-free bovine serum albumin. The membrane fraction obtained represents approximately a 15-fold enrichment of the postsynaptic marker proteins muscarinic and nicotinic acetylcholine receptor and 3',5'-cyclic nucleotide phosphodiesterase over an ordinary synaptic plasma membrane preparation, and is devoid of mitochondrial and microsomal contaminations. The membranes appear on the electron micrographs as rigid fragments (average length 2500-4000A), which do not form vesicles.  相似文献   

7.
C H Yen  M C Tzeng 《Biochemistry》1991,30(48):11473-11477
Crotoxin and other neurotoxic phospholipase A2s exert neurotoxicity by acting primarily at the presynaptic level. Strong binding of crotoxin and several others to synaptic membranes has been demonstrated previously. In this study we used simple chemical cross-linking techniques to identify the neuronal membrane molecules involved in the binding of these toxins. After 125I-crotoxin had bound to synaptosomes from guinea pig brain, treatment with disuccinimidyl suberate, disuccinimidyl dithiobis(propionate) or ethylene glycol bis(succinimidyl succinate) resulted in the formation of a predominant radioactive conjugate of approximately 60 kDa, which was different from the conjugate formed by photoaffinity labeling technique in a previous report. The membrane component in the conjugate was shown to be a single-chain protein of approximately 45 kDa. In subfractions of synaptosomes, this binding protein was mostly found in the synaptic membrane fraction and was not present in the mitochondrial fraction. Plasma membranes from several nonneural tissues also did not contain this binding protein. Unmodified crotoxin inhibited the formation of this adduct with an IC50 of around 1 x 10(-8) M. Mojave toxin and some other phospholipase A2s were also highly inhibitory to this conjugation, and notexin and others were less effective, while beta-bungarotoxin and pancreatic PLA2 were totally ineffective. We concluded that a new protein of 45 kDa specifically present in neuronal membranes is another major molecule responsible for the binding of crotoxin and other phospholipase A2s.  相似文献   

8.
9.
Noradrenaline stimulated the incorporation of oleate into choline glycerophospholipids of guinea-pig brain synaptic membranes incubated in sodium phosphate buffer. In the presence of 1 mm-NaF, noradrenaline stimulated the incorporation of oleate into the choline glycerophospholipids, phosphatidylinositol, ethanolamine glycerophospholipids, phosphatidylserine and phosphatidic acid of synaptic membranes incubated in 10 mm-Tris-HCl buffer. In Tris-CHl containing 1 mm-NaF, stimulation of incorporation of oleate into choline glycerophospholipids by noradrenaline was enhanced by ATP, CaCl2, MgCl2 and CoA plus dithiothreitol. The optimum concentration of CaCl2 for stimulation by 10 mum-noradrenaline was 10 mum. In the presence of CaCl2, the optimum concentration of ATP-2MgCl2 was in the range 0.1-1 mm. Acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine, histamine and gamma-aminobutyric acid also stimulated the incorporation of oleate into choline glycerophospholipids of synaptic membranes. Sigmoidal dose-response curves were obtained, similar to those obtained previously for stimulation by the same agonists of the hydrolysis of phosphatidylcholine by phospholipase A2 (Gullis & Rowe, 1975a). The initial rate of transfer of oleate from oleoyl-CoA to choline glycerophospholipid was similar to the initial rate of transfer from oleate-albumin, stimulated by noradrenaline. Transfer of oleate from oleoyl-CoA was not appreciably stimulated by noradrenaline, but was stimulated by ATP and MgCl2.  相似文献   

10.
A synaptic-membrane fraction rich in junctional components and Na-K ATPase and AChE activity was isolated from the cerebral cortex of the squirrel monkey. Incubation of membrane preparations with phospholipase C decreased the activity of Na-K ATPase by 50 per cent but had no effect on the activity of AChE. Analysis of the membrane fraction showed that phospholipase C cleaved both choline phosphoglyceride and the diacyl type of ethanolamine phosphoglyceride from membrane lipids. Addition of egg lecithin at low concentrations partially restored the activity of Na-K ATPase. Kinetic studies revealed that treatment with phospholipase C may produce a non-competitive type of inhibition as a result of the cleavage of a charged phosphorylated nitrogen base from membrane lipids.  相似文献   

11.
12.
13.
Adenosine has a potent depressant action on cerebral cortical neurons, including identified corticospinal cells. Adenosine 2′-, 3′- and 5′-phosphates, including adenosine 5′-imidodiphosphate, had comparable depressant actions and 2-chloroadenosine was an even more potent depressant. Inhibitors of adenosine uptake, hexobendine and papaverine, potentiated the actions of adenosine and adenosine 5′-monophosphate. Theophylline and caffeine antagonized the depressant actions of adenosine and adenosine 5′-monophosphate. The results are compatible with the hypothesis that adenosine depresses neurons by activating an extracellular receptor and that this effect can be blocked by theophylline and caffeine.  相似文献   

14.
Simonsen AC 《Biophysical journal》2008,94(10):3966-3975
Formation of liquid-ordered domains in model membranes can be linked to raft formation in cellular membranes. The lipid stoichiometry has a governing influence on domain formation and consequently, biochemical hydrolysis of specific lipids has the potential to remodel domain features. Activation of phospholipase A2 (PLA2) by ternary model membranes with three components (DOPC/DPPC/Cholesterol) can potentially change the domain structure by preferential hydrolysis of the phospholipids. Using fluorescence microscopy, this work investigates the changes in domain features that occur upon PLA2 activation by such ternary membranes. Double-supported membranes are used, which have minimal interactions with the solid support. For membranes prepared in the coexistence region, PLA2 induces a decrease of the liquid-disordered (Ld) phase and an increase of the liquid-ordered (Lo) phase. A striking observation is that activation by a uniform membrane in the Ld phase leads to nucleation and growth of Lo-like domains. This phenomenon relies on the initial presence of cholesterol and no PLA2 activation is observed by membranes purely in the Lo phase. The observations can be rationalized by mapping partially hydrolyzed islands onto trajectories in the phase diagram. It is proposed that DPPC is protected from hydrolysis through interactions with cholesterol, and possibly the formation of condensed complexes. This leads to specific trajectories which can account for the observed trends. The results demonstrate that PLA2 activation by ternary membrane islands may change the global lipid composition and remodel domain features while preserving the overall membrane integrity.  相似文献   

15.
The temperature dependence (5-40 degrees C) of the acetylcholinesterase activity in synaptic membranes of the rat brain at different substrate concentrations was studied. At low substrate concentrations, the Arrhenius plot has two linear sections. At high concentration, there is one linear section throughout the temperature range. The addition of glycerol to incubation medium to final concentrations of 1 and 2% (w/v) increases the Michaelis constant, without affecting the maximal rate and the inhibition constant. The role of diffusion in the temperature dependence of the acetylcholinesterase activity is discussed.  相似文献   

16.
The distribution pattern of marker enzymes (Na, K-ATPase, acetylcholinesterase) in three fractions of synaptic membranes (SM) of rat brain were studied. The effects of three anticonvulsive agents on Na, K-ATPase from the total fraction of rat brain SM and purified membrane preparation from ox brain were estimated by different methods. Under optimal conditions (Na/K = 5) diphenylhydantoin (DPH) at a concentration of 0,1 mM activates Na, K-ATPase from the total SM fraction only in the absence of ouabain, whereas carbamazepine and pyrroxane taken at the same concentrations have no effect on Na, K-ATPase, irrespective of the type of the enzyme assay. DPH seems to compete with ouabain. Under non-optimal ionic conditions (Na/K = 250) all the anticonvulsive substances studied inhibit Na, K-ATPase of the total SM fraction. The mixture of hydrophobic agents (propylene glycol and ethanol) used to dissolve carbamazepine inhibits Na, K-ATPase from the total SM fraction only under non-optimal conditions. The inhibiting effect of the anticonvulsive substances under study on Na, K-ATPase from the purified membrane preparations is maximal at the concentration of 10(-6) M; at higher concentrations the effect is less pronounced.  相似文献   

17.
Guinea-pig alveolar macrophages were harvested by bronchoalveolar lavage and purified by differential adhesion. They were labeled with 14C-Arachidonic acid and then exposed to platelet-activating factor or to the calcium ionophore A23187. The activity of cellular phospholipase A2 was considered as the release of free 14C-Arachidonic acid in the cell supernatant. The pretreatment of guinea-pig alveolar macrophages with two lipocortin-like proteins (36 kDa and 40 kDa) purified from mice lung induced a significant inhibition of their phospholipase A2 activity upon platelet-activating factor and calcium ionophore stimulation. These results indicate that lipocortin-like proteins can modulate the phospholipase A2 activity of isolated cells in vitro.  相似文献   

18.
The phospholipase activity of rat jejunal brush-border membranes was examined in the presence of several solubilizing agents, by measuring the hydrolysis of endogenous membrane phospholipids, as well as the hydrolysis of exogenous, radiolabelled substrates. Enzyme activity was highly stimulated by dispersion in 1% solutions of bile salts, or in a synthetic, bile-salt derivative, 3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate (CHAPS). Under these conditions the endogenous membrane phospholipids were largely degraded to free fatty acids and water-soluble phosphate. In the presence of 1% CHAPS, hydrolysis of exogenous phosphatidylcholine was shown to be due to an initial phospholipase A2-type attack followed by a subsequent lysophospholipase-type attack. These activities co-purified with the brush-border membrane. Maximal phospholipase A2 hydrolysis occurred at an alkaline pH of 8-11, with bile-salt detergents present at greater than their critical micellar concentrations. Hydrolysis was completely divalent-ion independent. Phospholipase A2 activity was not stimulated by 50% diethyl ether or ethanol, or in the presence of 1% solutions of Triton X-100, Zwittergent 3-12, sodium dodecyl sulphate, or n-octylglucoside. Stimulation of phospholipase activity by detergents was not related to their effectiveness at solubilizing the membrane proteins. When assayed individually phosphatidylcholine and lysophosphatidylcholine were each hydrolyzed (at the sn-2 and sn-1 positions, respectively) at a rate of approximately 125 nmol/mg protein per min. When assayed together, the two substrates appeared to compete for the same active site over a wide range of concentrations. It was concluded that the brush-border membrane contains an integral membrane protein with phospholipase A2 and lysophospholipase activities, which is specifically stimulated by bile salts and bile salt-like detergents.  相似文献   

19.
Dawson  R. M. C.  Irvine  R. F.  Hemington  N.  Hirasawa  K. 《Neurochemical research》1982,7(9):1149-1161
Rat brain contains a soluble, high molecular weight phospholipase A1 of alkaline pH optimum which shows a preference for phosphatidylethanolamine as substrate. There is evidence that the same enzyme exists in liver and kidney. At low osmotic concentrations of buffer the enzyme is markedly stimulated by CaCl2. However, MgCl2 and MnCi2 are equally as effective although at concentrations above 2 mM the activation falls away with MnCl2. The phospholipase A1 is stimulated by divalent metal ion chelators (EDTA, EGTA, CDTA) and by sodium phosphate and sodium sulphate. The activity is inhibited by hexanol, benzyl alcohol, diethylether and detergents. Although the activity can be inhibited by saturated and unsaturated fatty acids, no evidence could be obtained that the activators function by counteracting the inhibitory action of fatty acids liberated at the interface of the substrate and incubation medium. It is suggested that to achieve good enzymic hydrolysis a certain type of organised hydrated phosphatidylethanolamine structure is required in which the negative zeta potential has been reduced by metallic cations in the incubation medium.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   

20.
The influence of β-adrenoceptor activation and inhibition by isoprenaline and propranolol on the specific binding of nonselective α1- and α2-adrenoceptor antagonists [3H]prazosin and [3H]RX821002 in rat cerebral cortex subcellular membrane fractions was studied. It was established that for the α1- and α2-adrenoceptors the ligand–receptor interaction corresponds to the model of one affinity pool of receptors and binding of two ligand molecules by one dimer receptor. The parameters of [3H]prazosin binding to α1-adrenoceptors were: K d = 1.85 ± 0.16 nM, B max = 31.14 ± 0.35 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.57 ± 0.27 nM, B max = 7.2 ± 1.6 fmol/mg protein, n = 2. When β-adrenoceptors were activated by isoprenaline, the binding of radiolabelled ligands with α1- and α2-adrenoceptors occurred according to the same model. The affinity to [3H]prazosin and the concentration of active α1-adrenoceptors increased by 27% (K d = 1.36 ± 0.03 nM) and 84% (B max = 57.37 ± 0.28 fmol/mg protein), respectively. The affinity of α2-adrenoceptors to [3H]RX821002 decreased by 56% (K d = 3.55 ± 0.02 nM), and the concentration of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg protein). Propranolol alters the binding character of both ligands. For [3H]prazosin and [3H]RX821002, two pools of receptors were detected with the following parameters: K d1 = 1.13 ± 0.09, K d2 = 6.07 ± 1.06 nM, B m1 = 11.36 ± 1.77, Bm2 = 51.09 ± 0.41 fmol/mg protein, n = 2 and K d1 = 0.61 ± 0.02, K d2 = 3.41 ± 0.13 nM, B m1 = 1.88 ± 0.028, B m2 = 9.27 ± 0.08 fmol/mg protein, n = 2, respectively. The concentration of active receptors (B max) increased twofold for both ligands. It was suggested that α1- and α2-adrenoceptors in rat cerebral cortex subcellular membrane fractions exist as dimers. A modulating influence of isoprenaline and propranolol on the specific binding of the antagonists to α1- and α2- adrenoceptors was revealed, which was manifested in the activating effect on the [3H]prazosin binding parameters, in the inhibitory effect on the [3H]RX821002 binding parameters, and in a change of the general character of binding for both ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号