首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Envelope glycoprotein interactions in coronavirus assembly   总被引:11,自引:0,他引:11       下载免费PDF全文
Coronaviruses are assembled by budding into smooth membranes of the intermediate ER-to-Golgi compartment. We have studied the association of the viral membrane glycoproteins M and S in the formation of the virion envelope. Using coimmunoprecipitation analysis we demonstrated that the M and S proteins of mouse hepatitis virus (MHV) interact specifically forming heteromultimeric complexes in infected cells. These could be detected only when the detergents used for their solubilization from cells or virions were carefully chosen: a combination of nonionic (NP-40) and ionic (deoxycholic acid) detergents proved to be optimal. Pulse-chase experiments revealed that newly made M and S proteins engaged in complex formation with different kinetics. Whereas the M protein appeared in complexes immediately after its synthesis, newly synthesized S protein did so only after a lag phase of > 20 min. Newly made M was incorporated into virus particles faster than S, which suggests that it associates with preexisting S molecules. Using the vaccinia virus T7-driven coexpression of M and S we also demonstrate formation of M/S complexes in the absence of other coronaviral proteins. Pulse-chase labelings and coimmunoprecipitation analyses revealed that M and S associate in pre-Golgi membranes because the unglycosylated form of M appeared in M/S complexes rapidly. Since no association of M and S was detected when protein export from the ER was blocked by brefeldin A, stable complexes most likely arise in the ER-to-Golgi intermediate compartment. Sucrose velocity gradient analysis showed the M/S complexes to be heterogeneous and of higher order, suggesting that they are maintained by homo- and heterotypic interactions. M/S complexes colocalized with alpha-mannosidase II, a resident Golgi protein. They acquired Golgi-specific oligosaccharide modifications but were not detected at the cell surface. Thus, the S protein, which on itself was transported to the plasma membrane, was retained in the Golgi complex by its association with the M protein. Because coronaviruses bud at pre-Golgi membranes, this result implies that the envelope glycoprotein complexes do not determine the site of budding. Yet, the self-association of the MHV envelope glycoproteins into higher order complexes is indicative of its role in the sorting of the viral membrane proteins and in driving the formation of the viral lipoprotein coat in virus assembly.  相似文献   

2.
A review of the structural studies of tobacco mosaic virus (TMV) is given. TMV is essentially a flat helical microcrystal with 16 1/3 subunits per turn. A single strand of RNA runs along the helix and is deeply embedded in the protein. The virus particles form oriented gels from which high-resolution X-ray fiber diffraction data can be obtained. This may be interpreted by the use of six heavy-atom derivatives to give an electron density map at 0.4 nm resolution from which the RNA configuration and the form of the inner part of the protein subunit may be determined. In addition, the protein subunits form a stable 17-fold two-layered disk which is involved in virus assembly and which crystallizes. By the use of noncrystallographic symmetry and a single heavy-atom derivative, it has been possible to solve the structure of the double disk to 0.28 nm resolution. In this structure one sees that an important structural role is played by four alpha-helices, one of which (the LR helix) appears to form the main binding site for the RNA. The main components of the binding site appear to be hydrophobic interactions with the bases, hydrogen bonds between aspartate groups and the sugars, and arginine salt bridges to the phosphate groups. The binding site is between two turns of the virus helix or between the turns of the double disk. In the disk, the region proximal to the RNA binding site is in a random coil until the RNA binds, whereupon the 24 residues involved build a well-defined structure, thereby encapsulating the RNA.  相似文献   

3.
4.
Cooperative interactions between different 30S ribosomal proteins during assembly in vitro are described. The site specific binding of S7 to 16S RNA is enhanced by S20; that of S16 requires S4 and S20; and S7 is required for the maximum binding of S9, S13 and S19. Some of these interactions are reflected in the protein neighborhoods of the functional ribosome, but this may not be a general rule. Finally, we suggest that the assembly cooperativety observed may not be a consequence of direct-protein interactions.  相似文献   

5.
6.
Protein interactions in the assembly of the baseplate have been investigated. The baseplate of the phage T4 tail consists of a hub and six wedges which surround the former. Both reversible and irreversible interactions were found. Reversible association includes gp5 and gp27 (gp: gene product) which form a complex in a pH-dependent manner and gp18 polymerization, i.e. the tail sheath formation depends on the ionic strength. These reversible interactions were followed by irreversible or tight binding which pulls the whole association reaction to complete the assembly. The wedge assembly is strictly ordered which means that if one of the seven wedge proteins is missing, the assembly proceeds to that point and the remaining molecules stay non-associated. The strictly sequential assembly pathway is suggested to be materialized by successive conformational change upon binding, which can be shown by proteolytic probe.  相似文献   

7.
8.
9.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   

10.
Highly purified mammalian spliceosomal complex B contains more than 30 specific protein components. We have carried out UV cross-linking studies to determine which of these components directly contacts pre-mRNA in purified prespliceosomal and spliceosomal complexes. We show that heterogeneous nuclear ribonucleoproteins cross-link in the nonspecific complex H but not in the B complex. U2AF65, which binds to the 3' splice site, is the only splicing factor that cross-links in purified prespliceosomal complex E. U2AF65 and the U1 small nuclear ribonucleoprotein particle (snRNP) are subsequently destabilized, and a set of six spliceosome-associated proteins (SAPs) cross-links to the pre-mRNA in the prespliceosomal complex A. These proteins require the 3' splice site for binding and cross-link to an RNA containing only the branch site and 3' splice site. Significantly, all six of these SAPs are specifically associated with U2 snRNP. These proteins and a U5 snRNP component cross-link in the fully assembled B complex. Previous work detected an ATP-dependent, U2 snRNP-associated factor that protects a 30- to 40-nucleotide region surrounding the branchpoint sequence from RNase digestion. Our data indicate that the six U2 snRNP-associated SAPs correspond to this branchpoint protection factor. Four of the snRNP proteins that are in intimate contact with the pre-mRNA are conserved between Saccharomyces cerevisiae and humans, consistent with the possibility that these factors play key roles in mediating snRNA-pre-mRNA interactions during the splicing reaction.  相似文献   

11.
The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a channel across the outer membrane through which pilus subunits are translocated and assembled into pili via a mechanism known as donor strand exchange. This is a mechanism whereby chaperone uncapping from a subunit is coupled with the simultaneous assembly of the subunit into the pilus fiber. Thus, in the pilus fiber, the N-terminal extension of every subunit completes the Ig fold of its neighboring subunit by occupying the same site previously occupied by the chaperone. Here, we investigated details of the donor strand exchange assembly mechanism. We discovered that the information necessary for targeting the FimC-FimH complex to the usher resides mainly in the FimH protein. This interaction is an initiating event in pilus biogenesis. We discovered that the ability of an incoming subunit (in a chaperone-subunit complex) to participate in donor strand exchange with the growing pilus depended on a previously unrecognized function of the chaperone. Furthermore, the donor strand exchange assembly mechanism between subunits was found to be necessary for subunit translocation across the outer membrane usher.  相似文献   

12.
During chromatin replication and nucleosome assembly, newly synthesized histone H4 is acetylated before it is deposited onto DNA, then deacetylated as assembly proceeds. In a previous study (Perry and Annunziato, Nucleic Acids Res. 17, 4275 [1989]) it was shown that when replication occurs in the presence of sodium butyrate (thereby inhibiting histone deacetylation), nascent chromatin fails to mature fully and instead remains preferentially sensitive to DNaseI, more soluble in magnesium, and depleted of histone H1 (relative to mature chromatin). In the following report the relationships between chromatin replication, histone acetylation, and H1-mediated nucleosome aggregation were further investigated. Chromatin was replicated in the presence or absence of sodium butyrate; isolated nucleosomes were stripped of linker histone, reconstituted with H1, and treated to produce Mg(2+)-soluble and Mg(2+)-insoluble chromatin fractions. Following the removal of H1, all solubility differences between chromatin replicated in sodium butyrate for 30 min (bu-chromatin) and control chromatin were lost. Reconstitution with H1 completely restored the preferential Mg(2+)-solubility of bu-chromatin, demonstrating that a reduced capacity for aggregation/condensation is an inherent feature of acetylated nascent nucleosomes; however, titration with excess H1 caused the solubility differences to be lost again. Moreover, when the core histone N-terminal "tails" (the sites of acetylation) were removed by trypsinization prior to reconstitution, H1 was unable to reestablish the altered solubility of chromatin replicated in butyrate. Thus, the core histone "tails," and the acetylation thereof, not only modulate H1-mediated nucleosome interactions in vitro, but also strongly influence the ability of H1 to differentiate between new and old nucleosomes. The data suggest a possible mechanism for the control of H1 deposition and/or chromatin folding during nucleosome assembly.  相似文献   

13.
14.
Coronavirus spike protein genes were expressed in vitro by using the recombinant vaccinia virus expression system. Recombinant spike proteins were expressed at the cell surface and induced cell fusion in a host-cell-dependent fashion. The intracellular transport of recombinant spike proteins was studied. The half time of acquisition of resistance to endo-beta-N-acetylglucosaminidase H was approximately 3 h for the recombinant feline infectious peritonitis virus S protein. The S protein in feline infectious peritonitis virus-infected cells was found to have a half time of acquisition of resistance to endo-beta-N-acetylglucosaminidase H of approximately 1 h. This difference can be explained by the fact that coronavirus budding takes place at intracellular membranes and that the oligosaccharides of the spike protein are modified after budding. Apparently, spike protein incorporated into budded virions is transported faster through the Golgi apparatus than is spike protein alone. These findings provide new insights into the mechanism of coronavirus budding and are discussed in relation to current models of intracellular transport and sorting of proteins.  相似文献   

15.
We used yeast two-hybrid and in vitro co-immobilization assays to study the interaction between the Escherichia coli RNA polymerase (RNAP) alpha and beta subunits during the formation of alpha(2)beta, a physiological RNAP assembly intermediate. We show that a 430-amino acid-long fragment containing beta conserved segments F, G, H, and a short part of segment I forms a minimal domain capable of specific interaction with alpha. The alpha-interacting domain is held together by protein-protein interactions between beta segments F and I. Residues in catalytically important beta segments H and I directly participate in alpha binding; substitutions of strictly conserved segment H Asp(1084) and segment I Gly(1215) abolish alpha(2)beta formation in vitro and are lethal in vivo. The importance of these beta amino acids in alpha binding is fully supported by the structural model of the Thermus aquaticus RNAP core enzyme. We also demonstrate that determinants of RNAP assembly are conserved, and that a homologue of beta Asp(1084) in A135, the beta-like subunit of yeast RNAP I, is responsible for interaction with AC40, the largest alpha-like subunit. However, the A135-AC40 interaction is weak compared with the E. coli alpha-beta interaction, and A135 mutation that abolishes the interaction is phenotypically silent. The results suggest that in eukaryotes additional RNAP subunits orchestrate the enzyme assembly by stabilizing weak, but specific interactions of core subunits.  相似文献   

16.
Inter-helix hydrogen bonding involving asparagine (Asn, N), glutamine (Gln, Q), aspartic acid (Asp, D) or glutamic acid (Glu, E) can drive efficient di- or trimerization of transmembrane helices in detergent micelles and lipid bilayers. Likewise, Asn-Asn and Asp-Asp pairs can promote the formation of helical hairpins during translocon-mediated membrane protein assembly in the endoplasmic reticulum. By in vitro translation of model integral membrane protein constructs in the presence of rough microsomes, we show that Asn- or Asp-mediated interactions with a neighbouring transmembrane helix can enhance the membrane insertion efficiency of a marginally hydrophobic transmembrane segment. Our observations suggest that inter-helix hydrogen bonds can form during Sec61 translocon-assisted insertion and thus could be important for membrane protein assembly.  相似文献   

17.
18.
Shen H  Green MR 《Molecular cell》2004,16(3):363-373
Serine-arginine (SR) proteins are general splicing factors and can function through binding to exonic splicing enhancers (ESEs). SR proteins and several other mammalian splicing factors contain an arginine-serine-rich (RS) domain required to promote splicing. We have recently found that the ESE bound RS domain functions by contacting the branchpoint. Here, we perform RNA-protein crosslinking experiments to show that the branchpoint is sequentially contacted first in complex E by the RS domain of the essential splicing factor U2AF(65) and then in the prespliceosome by the ESE bound RS domain. Although the ESE bound RS domain can promote formation of the prespliceosome, at least one additional SR protein is required for complete spliceosome assembly. We show that the RS domain of this additional SR protein contacts the 5' splice site specifically in the mature spliceosome. We propose that direct contact with splicing signals is a general mechanism by which RS domains promote splicing.  相似文献   

19.
The coronavirus assembly process encloses a ribonucleoprotein genome into vesicles containing the lipid-embedded proteins S (spike), E (envelope), and M (membrane). This process depends on interactions with membranes that may involve palmitoylation, a common posttranslational lipidation of cysteine residues. To determine whether specific palmitoylations influence coronavirus assembly, we introduced plasmid DNAs encoding mouse hepatitis coronavirus (MHV) S, E, M, and N (nucleocapsid) into 293T cells and found that virus-like particles (VLPs) were robustly assembled and secreted into culture medium. Palmitate adducts predicted on cysteines 40, 44, and 47 of the 83-residue E protein were then evaluated by constructing mutant cDNAs with alanine or glycine codon substitutions at one or more of these positions. Triple-substituted proteins (E.Ts) lacked palmitate adducts. Both native E and E.T proteins localized at identical perinuclear locations, and both copurified with M proteins, but E.T was entirely incompetent for VLP production. In the presence of the E.T proteins, the M protein subunits accumulated into detergent-insoluble complexes that failed to secrete from cells, while native E proteins mobilized M into detergent-soluble secreted forms. Many of these observations were corroborated in the context of natural MHV infections, with native E, but not E.T, complementing debilitated recombinant MHVs lacking E. Our findings suggest that palmitoylations are essential for E to act as a vesicle morphogenetic protein and further argue that palmitoylated E proteins operate by allowing the primary coronavirus assembly subunits to assume configurations that can mobilize into secreted lipid vesicles and virions.  相似文献   

20.
Protein machines and self assembly in muscle organization.   总被引:2,自引:0,他引:2  
The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号