首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the double-strand DNA passage reaction of eukaryotic type II topoisomerases, a quantitative assay to monitor the enzymic conversion of supercoiled circular DNA to relaxed circular DNA was developed. Under conditions of maximal activity, relaxation catalyzed by the Drosophila melanogaster topoisomerase II was processive and the energy of activation was 14.3 kcal . mol-1. Removal of supercoils was accompanied by the hydrolysis of either ATP or dATP to inorganic phosphate and the corresponding nucleoside diphosphate. Apparent Km values were 200 microM for pBR322 plasmid DNA, 140 microM for SV40 viral DNA, 280 microM for ATP, and 630 microM for dATP. The turnover number for the Drosophila enzyme was at least 200 supercoils of DNA relaxed/min/molecule of topoisomerase II. The enzyme interacts preferentially with negatively supercoiled DNA over relaxed molecules, is capable of removing positive superhelical twists, and was found to be strongly inhibited by single-stranded DNA. Kinetic and inhibition studies indicated that the beta and gamma phosphate groups, the 2'-OH of the ribose sugar, and the C6-NH2 of the adenine ring are important for the interaction of ATP with the enzyme. While the binding of ATP to Drosophila topoisomerase II was sufficient to induce a DNA strand passage event, hydrolysis was required for enzyme turnover. The ATPase activity of the topoisomerase was stimulated 17-fold by the presence of negatively supercoiled DNA and approximately 4 molecules of ATP were hydrolyzed/supercoil removed. Finally, a kinetic model describing the switch from a processive to a distributive relaxation reaction is presented.  相似文献   

2.
3.
Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here we describe a new type II topoisomerase from Mycobacterium smegmatis which is different from DNA gyrase or topoisomerase IV in its characteristics and origin. The topoisomerase is distinct with respect to domain organization, properties and drug sensitivity. The enzyme catalyses relaxation of negatively supercoiled DNA in an ATP-dependent manner and also introduces positive supercoils to both relaxed and negatively supercoiled substrates. The genes for this additional topoisomerase are not found in other sequenced mycobacterial genomes and may represent a distant lineage.  相似文献   

4.
Movement of the DNA replication machinery through the double helix induces acute positive supercoiling ahead of the fork and precatenanes behind it. Because topoisomerase I and II create transient single- and double-stranded DNA breaks, respectively, it has been assumed that type I enzymes relax the positive supercoils that precede the replication fork. Conversely, type II enzymes primarily resolve the precatenanes and untangle catenated daughter chromosomes. However, studies on yeast and bacteria suggest that type II topoisomerases may also function ahead of the replication machinery. If this is the case, then positive DNA supercoils should be the preferred relaxation substrate for topoisomerase IIalpha, the enzyme isoform involved in replicative processes in humans. Results indicate that human topoisomerase IIalpha relaxes positively supercoiled plasmids >10-fold faster than negatively supercoiled molecules. In contrast, topoisomerase IIbeta, which is not required for DNA replication, displays no such preference. In addition to its high rates of relaxation, topoisomerase IIalpha maintains lower levels of DNA cleavage complexes with positively supercoiled molecules. These properties suggest that human topoisomerase IIalpha has the potential to alleviate torsional stress ahead of replication forks in an efficient and safe manner.  相似文献   

5.
Y Pommier  D Kerrigan  K Kohn 《Biochemistry》1989,28(3):995-1002
The polyamines spermine and spermidine were found to enhance the formation of a stable noncovalent complex between mammalian topoisomerase II and DNA. This complex is not associated with DNA strand breaks and forms to a greater extent with supercoiled than with relaxed circular or with linear DNA. Polyamine-induced complex formation is associated with a stimulation of the enzymatic relaxation of DNA supercoils. In these respects, the polyamine-enhanced complex differs from the covalent cleavable complexes stabilized by DNA intercalators such as amsacrine (m-AMSA) or epipodophylotoxins such as teniposide (VM-26). In the polyamine-enhanced complex, the topoisomerase II may be a donutlike structure topologically bound to the DNA and able to migrate and dissociate from the ends of linear DNA molecules. At relatively high concentrations, spermine (1 mM) enhances topoisomerase II induced cleavage at certain sites on the SV40 genome that could have regulatory significance.  相似文献   

6.
Camptothecin, a cytotoxic antitumor compound, has been shown to produce protein-linked DNA breaks mediated by mammalian topoisomerase I. We have investigated the mechanism by which camptothecin disrupts DNA processing by topoisomerase I and have examined the effect of certain structurally related compounds on the formation of a DNA-topoisomerase I covalent complex. Enzyme-mediated cleavage of supercoiled plasmid DNA in the presence of camptothecin was completely reversed upon the addition of exogenous linear DNA or upon dilution of the reaction mixture. Camptothecin and topoisomerase I produced the same amount of cleavage from supercoiled DNA or relaxed DNA. In addition, the alkaloid decreased the initial velocity of supercoiled DNA relaxation mediated by catalytic quantities of topoisomerase I. Inhibition occurred under conditions favoring processive catalysis as well as under conditions favoring distributive catalysis. By use of [3H]camptothecin and an equilibrium dialysis assay, the alkaloid was shown to bind reversibly to a DNA-topoisomerase I complex, but not to isolated enzyme or isolated DNA. These results are consistent with a model in which camptothecin reversibly traps an intermediate involved in DNA unwinding by topoisomerase I and thereby perturbs a set of equilibria, resulting in increased DNA cleavage. By examining certain compounds that are structurally related to camptothecin, it was found that the 20-hydroxy group, which has been shown to be essential for antitumor activity, was also necessary for stabilization of the covalent complex between DNA and topoisomerase I. In contrast, no such correlation existed for UV-light-induced cleavage of DNA by Cu(II)-camptothecin derivatives.  相似文献   

7.
Characterization of a potent catenation activity of HeLa cell nuclei   总被引:1,自引:0,他引:1  
Using an assay which measures catenation of a supercoiled DNA template, we have characterized and quantitated a potent activity identified in crude fractions of HeLa cell nuclei. Catenation requires Mg-ATP and a DNA-condensing agent, polyvinyl alcohol. A filter-binding or agarose gel assay can be used to quantitate activity. In this reaction, DNA topoisomerase I relaxes the input supercoiled DNA to provide DNA topoisomerase II, a strongly favored template for catenation. DNA topoisomerase II preferentially catenates relaxed DNA over supercoiled DNA by a factor of 100. One molecule of DNA topoisomerase II is able to catenate about 20 circles of relaxed DNA/min at 30 degrees C but only 0.16 circle of supercoiled DNA/min at 30 degrees C. The purified HeLa topoisomerase I can also catenate DNA under these assay conditions, yet in an ATP-independent fashion. It is much less efficient than topoisomerase II; one molecule of topoisomerase I catenates only about 3.8 X 10(-3) molecules of supercoiled DNA/min at 30 degrees C with a DNA template containing 5% nicked circles. This remarkable difference between the two enzymes allows quantitation of DNA topoisomerase II activity seen in the presence of excess topoisomerase I. Unlike Escherichia coli topoisomerase I (omega), catenation by the HeLa topoisomerase I is not stimulated by gapped circles.  相似文献   

8.
McClendon AK  Dickey JS  Osheroff N 《Biochemistry》2006,45(38):11674-11680
Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils. It has been proposed that the ability of some type II enzymes, such as human topoisomerase IIalpha and Escherichia coli topoisomerase IV, to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein. In contrast, the ability of human topoisomerase IIalpha and topoisomerase IIbeta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process. To test this hypothesis, the ability of Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed. These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain. While PBCV-1 and CVM-1 topoisomerase II relaxed under- and overwound substrates at similar rates, they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA. Preferential cleavage was not due to a change in site specificity, DNA binding, or religation. These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.  相似文献   

9.
A topoisomerase able to introduce positive supercoils in a closed circular DNA, has been isolated from the archaebacterium Sulfolobus acidocaldarius. This enzyme, fully active at 75 degrees C, performed in vitro positive supercoiling either from negatively supercoiled, or from relaxed DNA in a catalytic reaction. In the presence of polyethylene glycol (PEG 6000), this reaction became very fast and highly processive, and the product was positively supercoiled DNA with a high superhelical density (form I+). Very low (5 - 10 micromoles) ATP concentrations were sufficient to support full supercoiling; the nonhydrolyzable analogue adenosine-5' -0-(3-thiotriphosphate) also sustained the production of positive supercoils, but to a lesser extent, suggesting that ATP hydrolysis was necessary for efficient activity. Nevertheless, low residual of positive supercoiling occurred, even in the absence of ATP, when the substrate was negatively supercoiled. Finally, the different ATP-driven topoisomerizations observed, i.e., relaxation of negative supercoils and positive supercoiling, in all cases increased the linking number of DNA in steps of 1, suggesting the action of a type I, rather than a type II topoisomerase.=  相似文献   

10.
McClendon AK  Osheroff N 《Biochemistry》2006,45(9):3040-3050
Collisions with DNA tracking systems are critical for the conversion of transient topoisomerase-DNA cleavage complexes to permanent strand breaks. Since DNA is overwound ahead of tracking systems, cleavage complexes most likely to produce permanent strand breaks should be formed between topoisomerases and positively supercoiled molecules. Therefore, the ability of human topoisomerase IIalpha and IIbeta and topoisomerase I to cleave positively supercoiled DNA was assessed in the absence or presence of anticancer drugs. Topoisomerase IIalpha and IIbeta maintained approximately 4-fold lower levels of cleavage complexes with positively rather than negatively supercoiled DNA. Topoisomerase IIalpha also displayed lower levels of cleavage with overwound substrates in the presence of nonintercalative drugs. Decreased drug efficacy was due primarily to a drop in baseline (i.e., nondrug) cleavage, rather than an altered interaction with the enzyme-DNA complex. Similar results were seen for topoisomerase IIbeta, but the effects of DNA geometry on drug-induced scission were somewhat less pronounced. With both topoisomerase IIalpha and IIbeta, intercalative drugs displayed greater relative cleavage enhancement with positively supercoiled DNA. This appeared to result from negative effects of high concentrations of intercalative agents on underwound DNA. In contrast to the type II enzymes, topoisomerase I maintained approximately 3-fold higher levels of cleavage complexes with positively supercoiled substrates and displayed an even more dramatic increase in the presence of camptothecin. These findings suggest that the geometry of DNA supercoils has a profound influence on topoisomerase-mediated DNA scission and that topoisomerase I may be an intrinsically more lethal target for anticancer drugs than either topoisomerase IIalpha or IIbeta.  相似文献   

11.
The proposed mechanism of type IA DNA topoisomerase I includes conformational changes by the single enzyme polypeptide to allow binding of the G strand of the DNA substrate at the active site, and the opening or closing of the "gate" created on the G strand of DNA to the passing single or double DNA strand(s) through the cleaved G strand DNA. The shifting of an alpha helix upon G strand DNA binding has been observed from the comparison of the type IA DNA topoisomerase crystal structures. Site-directed mutagenesis of the strictly conserved Gly-194 at the N terminus of this alpha helix in Escherichia coli DNA topoisomerase I showed that flexibility around this glycine residue is required for DNA cleavage and relaxation activity and supports a functional role for this hinge region in the enzyme conformational change.  相似文献   

12.
DNA topoisomerase II is believed to be the enzyme that produces the protein-associated DNA strand breaks observed in mammalian cell nuclei treated with various intercalating agents. Two intercalators--4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA, amsacrine) and 2-methyl-9-hydroxyellipticinium (2-Me-9-OH-E+)--differ in their effects on protein-associated double-strand breaks in isolated nuclei. m-AMSA stimulates their production at all concentrations, whereas 2-Me-9-OH-E+ stimulates at low concentrations and inhibits at high concentrations. We have reproduced these differential effects in experiments carried out in vitro with purified L1210 DNA topoisomerase II, and we have found that concentrations of 2-Me-9-OH-E+ above 5 microM prevent the trapping of DNA-topoisomerase II cleavable complexes irrespective of the presence of m-AMSA. It also stimulated topoisomerase II mediated DNA strand passage, again with or without inhibitory amounts of m-AMSA (this result suggests that extensive intercalation by 2-Me-9-OH-E+ destabilized the cleavable complexes). From these data, it is concluded that intercalator-induced protein-associated DNA strand breaks observed in intact eukaryotic cells and isolated nuclei are generated by DNA topoisomerase II and that intercalators can affect mammalian DNA topoisomerase II in more than one way. They can trap cleavable complexes and inhibit DNA topoisomerase II mediated DNA relaxation (m-AMSA and low concentrations of 2-Me-9-OH-E+) or destabilize cleavable complexes and stimulate DNA relaxation (high concentrations of 2-Me-9-OH-E+).  相似文献   

13.
A catenating enzyme and a type I topoisomerase were purified from Trypanosoma cruzi. We investigated the inhibitory effect of DNA-intercalating drugs on topoisomerisations catalysed by these enzymes. Inhibition of catenation was detected by electrophoretic analysis in neutral agarose gels. However, the inhibition of relaxation was not readily detectable in these gels since supercoiled DNA, which was relaxed in the presence of an intercalating drug, returned to a supercoiled state when the drug was removed. Thus electrophoretic analyses were made in gels containing chloroquine so that unreacted DNA could be distinguished from DNA relaxed by the enzyme. The results show that the catenation was more sensitive to DNA-intercalating drugs than the relaxation.  相似文献   

14.
2-6 dimethyl-9-hydroxyellipticinium inhibited the relaxation of supercoiled DNA by the type I topoisomerase of T. cruzi. Since DNA relaxed in the presence of an intercalating drug prior to electrophoresis became supercoiled when the ligand was removed, we analysed the topoisomerisation in gels containing another ligand, chloroquine. The inhibition which is reported here, concerning a type I topoisomerase, is of an exceptional efficiency.  相似文献   

15.
The effect of poly(ADP-ribosylation) on calf thymus topoisomerase type II reactions has been investigated. Unknotting of phage P4 head DNA, and relaxation and catenation of supercoiled PM2 DNA are inhibited. We conclude that the inhibition results from poly(ADP-ribosylation) on the following grounds. Firstly, the enzyme poly(ADP-ribose) (PADPR) synthetase and NAD are required, secondly, the competitive synthetase inhibitor nicotinamide abolishes topoisomerase inhibition, and thirdly, the polymer alone is not inhibitory. The mechanism of inhibition appears to be disruption of the strand cleavage reaction. A topoisomerase-DNA complex can be formed that upon treatment with protein denaturant at low ionic strength results in strand cleavage. The amount of DNA present in such a cleavable-complex progressively decreased following pretreatment of topoisomerase type II with PADPR synthetase and increasing concentrations of NAD. Treatment of the pre-formed complex with NAD and PADPR synthetase had no effect on its salt-induced dissociation. This suggests that either poly(ADP-ribosylation) has no influence on dissociation of topoisomerase, in contrast to association, or topoisomerase is not accessible to the synthetase when bound to DNA. Similar data were obtained with calf thymus type I topoisomerase.  相似文献   

16.
K Jo  M D Topal 《Nucleic acids research》1998,26(10):2380-2384
Nae I protein was originally isolated for its restriction endonuclease properties. Nae I was later discovered to either relax or cleave supercoiled DNA, depending upon whether Nae I position 43 contains a lysine (43K) or leucine (43L) respectively. Nae I-43K DNA relaxation activity appears to be the product of coupling separate endonuclease and ligase domains within the same polypeptide. Whereas Nae I relaxes supercoiled DNA like a topoisomerase, even forming a transient covalent intermediate with the substrate DNA, Nae I shows no obvious sequence similarity to the topoisomerases. To further characterize the topoisomerase activity of Nae I, we report here that Nae I-43K changes the linking number of a single negatively supercoiled topoisomer of pBR322 by units of one and therefore is a type I topoisomerase. Positively supercoiled pBR322 was resistant to Nae I-43K. At low salt concentration Nae I-43K was processive; non-saturating amounts of enzyme relaxed a fraction of the DNA. At high salt concentration the same non-saturating amounts of Nae I-43K partially relaxed all the DNA in a step-wise fashion to give a Gaussian distribution of topoisomers, demonstrating a switch from a processive to a distributive mode of action. Nae I-43K decatenated kinetoplast DNA containing nicked circles, implying that Nae I-43K can cleave opposite a nick. The products of the reaction are decatenated nicked circles under both processive and distributive conditions. The behavior of Nae I-43K is consistent with that of a prokaryotic type I topoisomerase.  相似文献   

17.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

18.
H P Vosberg  F Eckstein 《Biochemistry》1977,16(16):3633-3640
We have synthesized fd and phi X174DNA in the presence of 2'-deoxyadenosine 5'-O-(1-thiotriphosphate) (dATP alpha S) and the corresponding phosphorothioate derivatives of dCTP and dTTP using ether-permeabilized E. coli cells or crude cell extracts of E. coli DNA polymerase I. Reaction rates of enzymes involved in the formation or breakdown of DNA are decreased in the presence of phosphorothioates. The amount of label incorporated with [35S]dATP alpha S suggests that the dAMP has been completely substituted by 2'-deoxyadenosine 5'-0-phosphorothioate (dAMPS). The substituted DNAs have the same sedimentation coefficients, similar buoyant density, infectivity, and thermal stability as the unsubstituted DNAs. The procedure therefore allows specific modification at the 5' position of dA, dC, or dT in the DNA. In view of the recent demonstration of specific binding of Pt2+ complexes to the phosphorothioate analogue of poly[r(A-U)] (Strothkamp, K.G., and Lippard, S.J. (1976), Proc. Natl. Acad. Sci. U.S.A. 73, 2536), the synthesis of phosphorothioate containing DNA may be of use for DNA sequencing by electron microscopy.  相似文献   

19.
In this study, we used, for the first time, atomic force microscope (AFM) images to investigate the mode of action of DNA topoisomerase I (topo I) in the presence and absence of its inhibitors: camptothecin (CPT) and tyrphostin AG-1387. The results revealed that in the absence of the inhibitors, the enzyme relaxed supercoiled DNA starting from a certain point in the DNA molecules and proceeded in one direction towards one of the edges of the DNA molecule. In addition, the relaxation of the supercoiled DNA is subsequently followed by a knotting event. In the presence of CPT, enzyme-supercoiled DNA complexes in which the enzyme is locked inside a relaxed region of the supercoiled DNA molecule were observed. Tyrphostin AG-1387 altered the DNA relaxation process of topo I producing unique shapes of DNA molecules. AFM images of the topo I protein provided a picture of the enzyme, which resembles its known crystallographic structure. Thus, AFM images provide new information on the mode of action of topo I in the absence and presence of its inhibitors.  相似文献   

20.
M A Krasnow  N R Cozzarelli 《Cell》1983,32(4):1313-1324
We studied the dynamics of site-specific recombination by the resolvase encoded by the Escherichia coli transposon Tn3. The pure enzyme recombined supercoiled plasmids containing two directly repeated recombination sites, called res sites. Resolvase is the first strictly site-specific topoisomerase. It relaxed only plasmids containing directly repeated res sites; substrates with zero, one or two inverted sites were inert. Even when the proximity of res sites was ensured by catenation of plasmids with a single site, neither relaxation nor recombination occurred. The two circular products of recombination were catenanes interlinked only once. These properties of resolvase require that the path of the DNA between res sites be clearly defined and that strand exchange occur with a unique geometry. A model in which one subunit of a dimeric resolvase is bound at one res site, while the other searches along adjacent DNA until it encounters the second site, would account for the ability of resolvase to distinguish intramolecular from intermolecular sites, to sense the relative orientation of sites and to produce singly interlinked catenanes. Because resolvase is a type 1 topoisomerase, we infer that it makes the required duplex bDNA breaks of recombination one strand at a time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号