首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).  相似文献   

2.
Heparan sulfate proteoglycans (HSPGs) are central modulators of developmental processes likely through their interaction with growth factors, such as GDNF, members of the FGF and TGFβ superfamilies, EGF receptor ligands and HGF. Absence of the biosynthetic enzyme, heparan sulfate 2-O-sulfotransferase (Hs2st) leads to kidney agenesis. Using a novel combination of in vivo and in vitro approaches, we have reanalyzed the defect in morphogenesis of the Hs2st/ kidney. Utilizing assays that separately model distinct stages of kidney branching morphogenesis, we found that the Hs2st/ UB is able to undergo branching and induce mesenchymal-to-epithelial transformation when recombined with control MM, and the isolated Hs2st null UB is able to undergo branching morphogenesis in the presence of exogenous soluble pro-branching growth factors when embedded in an extracellular matrix, indicating that the UB is intrinsically competent. This is in contrast to the prevailing view that the defect underlying the renal agenesis phenotype is due to a primary role for 2-O sulfated HS in UB branching. Unexpectedly, the mutant MM was also fully capable of being induced in recombination experiments with wild-type tissue. Thus, both the mutant UB and mutant MM tissue appear competent in and of themselves, but the combination of mutant tissues fails in vivo and, as we show, in organ culture. We hypothesized a 2OS-dependent defect in the mutual inductive process, which could be on either the UB or MM side, since both progenitor tissues express Hs2st. In light of these observations, we specifically examined the role of the HS 2-O sulfation modification on the morphogenetic capacity of the UB and MM individually. We demonstrate that early UB branching morphogenesis is not primarily modulated by factors that depend on the HS 2-O sulfate modification; however, factors that contribute to MM induction are markedly sensitive to the 2-O sulfation modification. These data suggest that key defect in Hs2st null kidneys is the inability of MM to undergo induction either through a failure of mutual induction or a primary failure of MM morphogenesis. This results in normal UB formation but affects either T-shaped UB formation or iterative branching of the T-shaped UB (possibly two separate stages in collecting system development dependent upon HS). We discuss the possibility that a disruption in the interaction between HS and Wnts (e.g. Wnt 9b) may be an important aspect of the observed phenotype. This appears to be the first example of a defect in the MM preventing advancement of early UB branching past the first bifurcation stage, one of the limiting steps in early kidney development.  相似文献   

3.
Vuong TT  Prydz K  Tveit H 《Glycobiology》2006,16(4):326-332
Serglycin with a green fluorescent protein tag (SG-GFP) expressed in epithelial Madin-Darby canine kidney cells is secreted mainly (85%) into the apical medium, but the glycosaminoglycan (GAG) chains on the SG-GFP protein core secreted basolaterally (15%) carry most of the sulfate added during biosynthesis (Tveit et al. (2005) J. Biol. Chem., 280, 29596-29603). Here we report further differences in apical and basolateral GAG synthesis. The less intensely sulfated chondroitin sulfate (CS) chains on apically secreted SG-GFP are longer than CS chains attached to basolateral SG-GFP, whereas the heparan sulfate (HS) chains are of similar lengths. When the supply of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is limited by chlorate treatment, the synthesis machinery maintains sulfation of HS chains on basolateral SG-GFP until it is inhibited at 50 mM chlorate, whereas basolateral CS chains lose sulfate already at 12.5 mM chlorate and become longer. Apically, incorporation of 35S-sulfate into CS is reduced to a lesser extent at higher chlorate concentrations than basolateral CS, although apical CS is less intensely sulfated than basolateral CS in control cells. Similar to what was found for basolateral HS, sulfation of apical HS was not reduced at chlorate concentrations below 50 mM. Also, protein-free, xyloside-based GAG chains secreted basolaterally are more intensely sulfated than their apical counterpart, supporting the view that separate apical and basolateral pathways exist for GAG synthesis and sulfation. Introduction of benzyl beta-d-xyloside (BX) to the GAG synthesis machinery reduces the apical secretion of SG-GFP dramatically and also the modification of SG-GFP by HS.  相似文献   

4.
In this study, the amounts and the fine structural characteristics of versican and decorin present in human colon adenocarcinomas (HCC) were investigated and compared with those in human normal colon (HNC). HCC is characterized by significant increase in the amounts of versican and decorin (13- and 8-fold in terms of protein, respectively). These two proteoglycans (PGs) were the predominant in HCC (86% of total uronic acid). In HNC, versican and decorin contained both chondroitin sulfate/dermatan sulfate chains (CS/DS), with DS to be the predominant one (90-93%). The molecular sizes (M(r)s) estimated for DS and CS chains were 25-28 and 21-28 kDa, respectively. In CS/DS chains isolated from both versican and decorin, 4-sulfated disaccharides accounted for 79-86% of total disaccharide units, respectively, whereas lower amounts of 6- and non-sulfated units were also recorded. In contrast, the tumor-associated versican and decorin were of smaller hydrodynamic size with lower glycosaminoglycan (GAG) content per PG molecule as compared with those found in HNC. In HCC, both PGs contained mainly CS chains (up to 86%) and the M(r)s of CS and DS chains were also found to be of smaller size (12 and 16 kDa, respectively). The sulfation patterns of CS/DS chains from both PGs were also significantly different. They were composed mainly of 6-sulfated disaccharides (63-70%), whereas 4-sulfated units accounted for 23-31%. A significant increase in the proportion of non-sulfated disaccharides was also recorded. These findings indicate that the colon adenocarcinoma is characterized by a remarkable increase in the concentration of versican and decorin. Furthermore, these PGs are significantly modified at the post-translational level, i.e. the type, length and the sulfation pattern of their GAG chains. These specific structural alterations of versican and decorin may influence the biology of cancer cells in HCC.  相似文献   

5.
Heparan sulfate (HS) sugar chains attached to core proteoglycans (PGs) termed HSPGs mediate an extensive range of cell–extracellular matrix (ECM) and growth factor interactions based upon their sulfation patterns. When compared with non‐osteogenic (maintenance media) culture conditions, under established osteogenic culture conditions, MC3T3‐E1 cells characteristically increase their osteogenic gene expression profile and switch their dominant fibroblast growth factor receptor (FGFR) from FGFR1 (0.5‐fold decrease) to FGFR3 (1.5‐fold increase). The change in FGFR expression profile of the osteogenic‐committed cultures was reflected by their inability to sustain an FGF‐2 stimulus, but respond to BMP‐2 at day 14 of culture. The osteogenic cultures decreased their chondroitin and dermatan sulfate PGs (biglycan, decorin, and versican), but increased levels of the HS core protein gene expression, in particular glypican‐3. Commitment and progress through osteogenesis is accompanied by changes in FGFR expression, decreased GAG initiation but increased N‐ and O‐sulfation and reduced remodeling of the ECM (decreased heparanase expression) resulting in the production of homogenous (21 kDa) HS chain. With the HSPG glypican‐3 expression strongly upregulated in these processes, siRNA was used to knockdown this gene to examine the effect on osteogenic commitment. Reduced glypican‐3 abrogated the expression of Runx2, and thus differentiation. The reintroduction of this HSPG into Runx2‐null cells allowed osteogenesis to proceed. These results demonstrate the dependence of osteogenesis on specific HS chains, in particular those associated with glypican‐3. J. Cell. Physiol. 220: 780–791, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Pancreatic carcinoma (PC) is a cancer type with highly malignant growth and dissemination pattern of which the mechanisms are poorly understood. However, the malignant phenotype is closely linked to extracellular matrix (ECM) of which proteoglycans (PGs) and hyaluronan (HA) play a crucial role in the control of tumor progression and metastasis. In this study, we demonstrated that versican and decorin, two different PGs with contradictory roles and functions in the pathobiology of cancer, were the main matrix PGs in PC presenting a great increase 27- and 7-fold, respectively, in comparison to normal pancreas (NP). PC was characterized by the disproportional increase of versican compared to decorin, about 4 to 1, with a concurrent increase of HA, which may be closely associated with the growth and aggressiveness of this carcinoma. Significant specific post-translational modifications were also observed in both versican and decorin regarding the type, hydrodynamic size, sulfation pattern and extent of uronate epimerization of their glycosaminoglycan chains (GAGs). In particular, chondroitin sulphate (CS) was the predominant GAG type in both PC-associated versican and decorin. The CS of PC-decorin was increased 11-fold, compared to NP in which dermatan sulfate (DS) was the predominant GAG type in both PGs. The sulfation pattern of GAG chains was significantly altered in PC, since 6-sulfated disaccharides predominated in both versican and decorin with a marked presence of non-sulfated disaccharides accompanied by lower hydrodynamic sizes of both CS and DS chains compared to NP. In conclusion, all these findings agree with the highly malignant phenotype of this cancer and, thus, more studies need to be addressed on the roles of the post-translational modifications of versican and decorin in the biology of cancer.  相似文献   

7.
In search of guiding principles involved in the branching of epithelial tubes in the developing kidney, we analyzed branching of the ureteric bud (UB) in whole kidney culture as well as in isolated UB culture independent of mesenchyme but in the presence of mesenchymally derived soluble factors. Microinjection of the UB lumen (both in the isolated UB and in the whole kidney) with fluorescently labeled dextran sulfate demonstrated that branching occurred via smooth tubular epithelial outpouches with a lumen continuous with that of the original structure. Epithelial cells within these outpouches cells were wedge-shaped with actin, myosin-2 and ezrin localized to the luminal side, raising the possibility of a "purse-string" mechanism. Electron microscopy and decoration of heparan sulfates with biotinylated FGF2 revealed that the basolateral surface of the cells remained intact, without the type of cytoplasmic extensions (invadopodia) that are seen in three-dimensional MDCK, mIMCD, and UB cell culture models of branching tubulogenesis. Several growth factor receptors (i.e., FGFR1, FGFR2, c-Ret) and metalloproteases (i.e., MT1-MMP) were localized toward branching UB tips. A large survey of markers revealed the ER chaperone BiP to be highly expressed at UB tips, which, by electron microscopy, are enriched in rough endoplasmic reticulum and Golgi, supporting high activity in the synthesis of transmembrane and secretory proteins at UB tips. After early diffuse proliferation, proliferating and mitotic cells were mostly found within the branching ampullae, whereas apoptotic cells were mostly found in stalks. Gene array experiments, together with protein expression analysis by immunoblotting, revealed a differential spatiotemporal distribution of several proteins associated with epithelial maturation and polarization, including intercellular junctional proteins (e.g., ZO-1, claudin-3, E-cadherin) and the subapical cytoskeletal/microvillar protein ezrin. In addition, Ksp-cadherin was found at UB ampullary cells next to developing outpouches, suggesting a role in epithelial-mesenchymal interactions. These data from the isolated UB culture system support a model where UB branching occurs through outpouching possibly mediated by wedge-shaped cells created through an apical cytoskeletal purse-string mechanism. Additional potential mechanisms include (1) differential localization of growth factor receptors and metalloproteases at tips relative to stalks; (2) creation of a secretory epithelium, in part manifested by increased expression of the ER chaperone BiP, at tips relative to stalks; (3) after initial diffuse proliferation, coexistence of a balance of proliferation vs. apoptosis favoring tip growth with a very different balance in elongating stalks; and (4) differential maturation of the tight and adherens junctions as the structures develop. Because, without mesenchyme, both lateral and bifid branching occurs (including the ureter), the mesenchyme probably restricts lateral branching and provides guidance cues in vivo for directional branching and elongation as well as functioning to modulate tubular caliber and induce differentiation. Selective cadherin, claudin, and microvillar protein expression as the UB matures likely enables the formation of a tight, polarized differentiated epithelium. Although, in vivo, metanephric mesenchyme development occurs simultaneously with UB branching, these studies shed light on how (mesenchymally derived) soluble factors alone regulate spatial and temporal expression of morphogenetic molecules and processes (proliferation, apoptosis, etc.) postulated to be essential to the UB branching program as it forms an arborized structure with a continuous lumen.  相似文献   

8.
Highly sulfated glycosaminoglycans (GAG) or proteoglycans (PG), especially heparan sulfate (HS) and heparan sulfate proteoglycan (HSPG), are considered to be intimately associated with amyloid deposits in different types of amyloidosis. Based on this relationship an important role for HS has been suggested in amyloidogenesis. The present immunohistological and ultrastructural study shows that in bovine renal AA-amyloidosis, sulfated GAG/PG was not restricted to amyloid deposits proper and that areas without GAP/PG were also present within the amyloid. Both glomerular and papillary amyloid contained HS (PG), and the latter also contained chondroitin sulfate (CS) and dermatan sulfate (DS), suggesting a correlation between the location of the amyloid and the type of GAG/PG deposited. Amyloid P component (AP) had a distribution similar to that of HSPG, confirming their affinity-based relationship. The GAG types found ultrastructurally in amyloid fibril preparations of glomerular and papillary amyloid isolated from the same kidney, reflected the immunohistological findings. HS was shown to be the predominant GAG in all papillary amyloid fibril extracts. Taking into account the chemico-physical properties of HS, it cannot be excluded that this predominance is introduced by the purification procedure. These results suggest that the association of GAG/PG and amyloid is not necessarily mutually obligatory and that the proposed importance of GAG in amyloidogenesis is disputable.  相似文献   

9.
The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican independent, whereas those that trigger syndecan-1 shedding make initial FGF2 responses glypican dependent. We further show that syndecan-1 shedding is mediated by matrix metalloproteinase-7 (MMP7), which, being anchored to cells by HSPGs, also causes its own release in a complex with syndecan-1 ectodomains. These results support a specific role for shed syndecan-1 or MMP7-syndecan-1 complexes in tumor progression and add to accumulating evidence that syndecans and glypicans have nonequivalent functions in vivo.  相似文献   

10.
Identification of proteoglycans in two human malignant mesothelioma cell lines, one with epithelial differentiation and the other with fibroblast-like phenotype, and the effects of epidermal (EGF), insulin-like (IGF-I) and platelet-derived (PDGF-BB) growth factors on the synthesis of hyaluronan (HA) and proteoglycans (PGs) were studied. Both cell lines synthesize HA and PGs: these last were recovered both as secreted and cell-associated compounds. Chondroitin sulfate (CS) containing PGs are mainly organized as versican in the extracellular medium and as thrombomodulin and syndecan in the cell membrane. Heparan sulfate (HS) containing PGs are mainly in the form of perlecan in the culture medium, whereas cell-associated HSPGs were recovered mainly as syndecan-1, -2 and -4. Receptors for EGF, IGF-I and PDGF-BB were identified in both cell lines. In addition to cell proliferation, these growth factors stimulated the synthesis of HA and PGs, the pattern of stimulation being unique for each of them and depending on the cell phenotype. EGF increased the synthesis of HA and PGs. IGF-I showed similar stimulatory effects on the synthesis of CSPGs, whereas higher amounts were needed to influence the synthesis of HA and HSPGs, the latter only being stimulated in the epithelial cell line. PDGF-BB stimulated the synthesis of HA, HSPGs and CSPGs at low concentrations, while the stimulatory effect was abolished at higher levels. Incubation with genistein inhibited the HA and PG synthesis induced by growth factors in a mode depending on both growth factor and genistein concentrations. The results clearly suggest that the stimulatory effects of EGF, IGF-I and PDGF-BB on matrix synthesis, expressed as proteoglycan synthesis, are mediated via receptor-growth factor complexes and the protein tyrosine kinase intracellular pathway.  相似文献   

11.
12.

Background

Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction.

Methodology/Principal Findings

Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [35S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([35S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [35S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30–33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase.

Conclusions/Significance

Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms.  相似文献   

13.
Papillomaviruses replicate in stratified epithelia of skin and mucosa. Infection with certain human papillomavirus (HPV) types is the main cause of anogenital neoplasia, in particular cervical cancer. Early events of papillomavirus infectivity are poorly understood. While heparan sulfate proteoglycans (HSPGs) mediate initial binding to the cell surface, the class of proteins carrying heparan sulfates has not been defined. Here we examined two processes of papillomavirus infection, attachment of virus-like particles (VLP) to cells and infection with authentic HPV type 11 (HPV11) virions. Of the HSPGs, syndecan-1 is the major epithelial form and is strongly upregulated in wound edge keratinocytes. We employed K562 cells, which lack HSPGs except minor amounts of endogenous betaglycan, and stable clones that express cDNAs of syndecan-1, syndecan-4, or glypican-1. Binding of VLP correlated with levels of heparan sulfate on the cell surface. Parental K562 bound HPV16 VLP weakly, whereas all three K562 transfectants demonstrated enhanced binding, with the highest binding capacity observed for syndecan-1-transfected cells, which also expressed the most HSPG. For HPV11 infectivity assays, a high virion inoculum was required to infect K562 cells, whereas ectopic expression of syndecan-1 increased permissiveness eightfold and expression of syndecan-4 or glypican-1 fourfold. Infection of keratinocytes was eliminated by treatment with heparitinase, but not phospholipase C, further implicating the syndecan family of integral membrane proteins as receptor proteins. Human keratinocytes with a homozygous deletion of alpha6 integrin are permissive for HPV11 infection. These results indicate that several HSPGs can serve as HPV receptors and support a putative role for syndecan-1, rather than alpha6 integrin, as a primary receptor protein in natural HPV infection of keratinocytes.  相似文献   

14.
Glycosaminoglycans (GAGs) in proteoglycan (PG) forms or as free GAGs are implicated in the growth and progression of malignant tumors. These macromolecules were investigated in human gastric carcinoma (HGC) and compared with those in human normal gastric mucosa (HNG). We report that HGC contained about 2-fold increased amounts of GAGs in comparison to HNG. Specifically, HGC showed 3- and 2.5-fold net increase in chondroitin sulphate (CS) and hyaluronan (HA) contents, respectively. Dermatan sulphate (DS) was slightly increased, but the amount of heparan sulphate (HS) was decreased. Of particular, interest were the quite different sulphation profiles of CS and DS chains in HGC in which, non-sulphated and 6-sulphated disaccharide units were increased 10 and 4 times, respectively, in comparison to HNG. On PG level, three different populations were identified in both HNG and HGC, being HSPGs, versican (CS/DS chains) and decorin (CS/DS chains). In HGC, the amounts of versican and decorin were significantly increased about 3- and 8-fold, respectively. These PGs were also characterized by marked decrease in hydrodynamic size and GAG content per PG molecule. Analysis of Delta-disaccharide of versican and decorin from HGC showed an increase of 6-sulphated Delta-disaccharides (Delta di-6S) and non-sulphated Delta-disaccharides (Delta di-0S) with a parallel decrease of 4-sulphated Delta-disaccharides (Delta di-4S) as compared to HNG, which closely correlated with the increase of CS content. In addition, the accumulation of core proteins of versican and decorin in HGC was also associated with many post-translational modifications, referring to the number, size, degree and patterns of sulphation and epimerization of CS/DS chains. Studies on the modified metabolism of PGs/GAGs are under progress and will help in deeper understanding of the environment in which tumor cells proliferate and invade.  相似文献   

15.
Previous histochemical studies have suggested a close temporal relationship between the deposition of highly sulfated glycosaminoglycans (GAGs) and amyloid during experimental AA amyloidosis. In the present investigation, we extended these initial observations by using specific immunocytochemical probes to analyze the temporal and ultrastructural relationship between heparan sulfate proteoglycan (HSPG) accumulation and amyloid deposition in a mouse model of AA amyloidosis. Antibodies against the basement membrane-derived HSPG (either protein core or GAG chains) demonstrated a virtually concurrent deposition of HSPGs and amyloid in specific tissue sites regardless of the organ involved (spleen or liver) or the induction protocol used (amyloid enhancing factor + silver nitrate, or daily azocasein injections). Polyclonal antibodies to AA amyloid protein and amyloid P component also demonstrated co-localization to sites of HSPG deposition in amyloid sites, whereas no positive immunostaining was observed in these locales with a polyclonal antibody to the protein core of a dermatan sulfate proteoglycan (known as "decorin"). Immunogold labeling of HSPGs (either protein core or GAG chains) in amyloidotic mouse spleen or liver revealed specific localization of HSPGs to amyloid fibrils. In the liver, heparan sulfate GAGs were also immunolocalized to the lysosomal compartment of hepatocytes and/or Kupffer cells adjacent to sites of amyloid deposition, suggesting that these cells are involved in HSPG production and/or degradation. The close temporal and ultrastructural relationship between HSPGs and AA amyloid further implies an important role for HSPGs during the initial stages of AA amyloidosis.  相似文献   

16.
X Lin  N Perrimon 《Matrix biology》2000,19(4):303-307
Heparan sulfate proteoglycans (HSPGs) are abundant molecules associated with the cell surface and extracellular matrix, and consist of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. Although these molecules have been the focus of intense biochemical studies in vitro, their biological functions in vivo were unclear until recently. We have undertaken an in vivo functional study of HSPGs in Drosophila. Our studies, as well as others, demonstrate the critical roles of HSPGs in several major signaling pathways, including ibroblast growth factor (FGF), Wnt, Hedgehog (Hh) and TGF-beta. Our results also suggest that specific HS GAG chain modifications, as well as specific HSPG protein cores, are involved in specific signaling pathways.  相似文献   

17.
Fibroblast growth factor-2 (FGF2) is a potent angiogenic factor in gliomas. Heparan sulfate promotes ligand binding to receptor tyrosine kinase and regulates signaling. The goal of this study was to examine the contribution of heparan sulfate proteoglycans (HSPGs) to glioma angiogenesis. Here we show that all brain endothelial cell HSPGs carry heparan sulfate chains similarly capable of forming a ternary complex with FGF2 and fibroblast growth factor receptor-1c and of promoting a mitogenic signal. Immunohistochemical analysis revealed that glypican-1 was overexpressed in glioma vessel endothelial cells, whereas this cell-surface HSPG was consistently undetectable in normal brain vessels. To determine the effect of increased glypican-1 expression on FGF2 signaling, we transfected normal brain endothelial cells, which express low base-line levels of glypican-1, with this proteoglycan. Glypican-1 expression enhanced growth of brain endothelial cells and sensitized them to FGF2-induced mitogenesis despite the fact that glypican-1 remained a minor proteoglycan. In contrast, overexpression of syndecan-1 had no effect on growth or FGF2 sensitivity. We conclude that the glypican-1 core protein has a specific role in FGF2 signaling. Glypican-1 overexpression may contribute to angiogenesis and the radiation resistance characteristic of this malignancy.  相似文献   

18.
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.  相似文献   

19.
We report further analysis of axonally transported proteoglycans in soluble and membranous subfractions of goldfish optic tectum. Distribution of transported35SO4 radioactivity was 35.2% soluble, 63.4% Triton-NaCl extractable and 1.4% unextracted. Proteoglycans isolated on DEAE cellulose were treated with chondroitinase AC or nitrous acid and remaining heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs) were sized on Sepharose CL-6B. Kav values and estimated molecular weights were: Soluble CSPG-0.36 (160 kDa), Triton-NaCl extracted CSPG-.031 (200 kDa), Soluble HSPG-0.37 (150 kDa), Triton-NaCl extracted HSPG-0.37 (150 kDa). For constituent CS and HS chains the Kav values and estimated molecular weights on CL-6B were: Soluble CS-0.55 (15 kDa), Triton-NaCl extracted CS-0.55 (15 kDa), Soluble HS-0.59 (13 kDa) and Triton-NaCl extracted HS-0.65 (9 kDa). CS was shown to be sulfated exclusively at carbon 4 for both soluble and Triton NaCl extracted fractions.  相似文献   

20.
Heparan sulfate proteoglycans (HSPGs) play critical roles in the distribution and signaling of growth factors, but the molecular mechanisms regulating HSPG function are poorly understood. Here, we characterized Sulf1, which is a Drosophila member of the HS 6-O endosulfatase class of HS modifying enzymes. Our genetic and biochemical analyses show that Sulf1 acts as a novel regulator of the Wg morphogen gradient by modulating the sulfation status of HS on the cell surface in the developing wing. Sulf1 affects gradient formation by influencing the stability and distribution of Wg. We also demonstrate that expression of Sulf1 is induced by Wg signaling itself. Thus, Sulf1 participates in a feedback loop, potentially stabilizing the shape of the Wg gradient. Our study shows that the modification of HS fine structure provides a novel mechanism for the regulation of morphogen gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号