首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipochitooligosaccharide Nod signals are important determinants of host specificity in the Rhizobium -legume symbiosis. The most rapid response of plant cells to the R. meliloti Nod signal NodRm-IV(C16:2,S) reported so far is the depolarization of the plasma membrane potential in alfalfa root hairs. In order to investigate whether this response may be part of a specific signal transduction cascade involved in the nodulation process, its specificity was studied with respect to host-specific modifications of the lipochitooligosaccharide. Five different Nod factors displaying different degrees of activity in inducing root hair deformation or cortical cell divisions on alfalfa were tested. The ability of the Nod factors to elicit plasma membrane depolarization correlated well with their activity in the bioassays. Removal of the sulfate group (NodRm-IV(C16:2)) led to inactivation of the Nod factor. An increase in the length of the chitooligosaccharide backbone (NodRm-V(C16:2,S)) or saturation of the acyl chain (NodRm-IV(C16:0,S)) resulted in severely reduced activity. In contrast, the O -acetyl group at the non-reducing terminus in NodRm-IV(Ac,C16:2,S), which confers substantially higher activity in long-term bioassays, did not enhance plasma membrane depolarization significantly in comparison with the non- O -acetylated factor. Thus, the rapid plasma membrane response is differentially sensitive to various structural motifs of the lipochitooligosaccharide. These data suggest that the different substituents modifying the basic Nod factor structure may have distinct functions, not all of them contributing to the interaction with a putative receptor in root hair cells. However, the overall specificity of the membrane depolarization for the cognate Nod factors raises the possibility that it is involved in a Nod signal transduction pathway.  相似文献   

2.
In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes inRhizobium meliloti. Experiments with14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoidnod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betainenod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally differentnod-gene-inducing signals in the absence of rhizobia. WhenR. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and anod-gene-inducing compound, formononetin-7-O-(6-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complexcis-acting sequences andtrans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producingnod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfanod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.  相似文献   

3.
Using ion-selective microelectrodes, the problem of how signals coming from symbiotic partners or from potential microbial intruders are distinguished was investigated on root hairs of alfalfa (Medicago sativa). The Nod factor, NodRm-IV(C16:2,S), was used to trigger the symbiotic signal and (GlcNAc)(8) was selected from (GlcNAc)(4-8), to elicit defense-related reactions. To both compounds, root hairs responded with initial transient depolarizations and alkalinizations, which were followed by a hyperpolarization and external acidification in the presence of (GlcNAc)(8). We propose that alfalfa recognizes tetrameric Nod factors and N-acetylchitooligosaccharides (n = 4-8) with separate perception sites: (a) (GlcNAc)(4) and (GlcNAc)(6) reduced the depolarization response to (GlcNAc)(8), but not to NodRm-IV(C16:2, S); and (b) depolarization and external alkalization were enhanced when NodRm-IV(C16:2,S) and (GlcNAc)(8) were added jointly without preincubation. We suggest further that changes in cytosolic pH and Ca(2+) are key events in the transduction, as well as in the discrimination of signals leading to symbiotic responses or defense-related reactions. To (GlcNAc)(8), cells responded with a cytosolic acidification, and they responded to NodRm-IV(C16:2,S) with a sustained alkalinization. When both agents were added jointly, the cytosol first alkalized and then acidified. (GlcNAc)(8) and NodRm-IV(C16:2,S) transiently increased cytosolic Ca(2+) activity, whereby the response to (GlcNAc)(8) exceeded the one to NodRm-IV(C16:2,S) by at least a factor of two.  相似文献   

4.
In temperate legumes, endosymbiotic nitrogen-fixing rhizobia gain access to inner root tissues via a specialized transcellular apoplastic compartment known as the infection thread (IT). To study IT development in living root hairs, a protocol has been established for Medicago truncatula that allows confocal microscopic observations of the intracellular dynamics associated with IT growth. Fluorescent labeling of both the IT envelope (AtPIP2;1-green fluorescent protein) and the host endoplasmic reticulum (green fluorescent protein-HDEL) has revealed that IT growth is a fundamentally discontinuous process and that the variable rate of root hair invagination is reflected in changes in the host cell cytoarchitecture. The concomitant use of fluorescently labeled Sinorhizobium meliloti has further revealed that a bacteria-free zone is frequently present at the growing tip of the IT, thus indicating that bacterial contact is not essential for thread progression. Finally, these in vivo studies have shown that gaps within the bacterial file are a common feature during the early stages of IT development, and that segments of the file are able to slide collectively down the thread. Taken together, these observations lead us to propose that (1) IT growth involves a host-driven cellular mechanism analogous to that described for intracellular infection by arbuscular mycorrhizal fungi; (2) the non-regular growth of the thread is a consequence of the rate-limiting colonization by the infecting rhizobia; and (3) bacterial colonization involves a combination of bacterial cell division and sliding movement within the extracellular matrix of the apoplastic compartment.  相似文献   

5.
Plant root sensing and adaptation to changes in the nutrient status of soils is vital for long-term productivity and growth. Reactive oxygen species (ROS) have been shown to play a role in root response to potassium deprivation. To determine the role of ROS in plant response to nitrogen and phosphorus deficiency, studies were conducted using wild-type Arabidopsis and several root hair mutants. The expression of several nutrient-responsive genes was determined by Northern blot, and ROS were quantified and localized in roots. The monitored genes varied in intensity and timing of expression depending on which nutrient was deficient. In response to nutrient deprivation, ROS concentrations increased in specific regions of the Arabidopsis root. Changes in ROS localization in Arabidopsis and in a set of root hair mutants suggest that the root hair cells are important for response to nitrogen and potassium. In contrast, the response to phosphorus deprivation occurs in the cortex where an increase in ROS was measured. Based on these results, we put forward the hypothesis that root hair cells in Arabidopsis contain a sensing system for nitrogen and potassium deprivation.  相似文献   

6.
Reactive oxygen species (ROS) are involved in supporting polar growth in pollen tubes, fucoid cells and root hair cells. However, there is limited evidence showing ROS changes during the earliest stages of the interaction between legume roots and rhizobia. We recently reported using Phaseolus vulgaris as a model system, the occurrence of a transient increase of ROS, within seconds, at the tip of actively growing root hair cells after treatment with Nod factors (NFs).1 This transient response is NFs-specific, and clearly distinct from the ROS changes induced by a fungal elicitor, with which sustained increases in ROS signal, is observed. Since ROS levels are transiently elevated after NFs perception, we propose that this ROS response is specific of the symbiotic interaction. Furthermore, the observed ROS changes correlate spatially and temporarily with the reported transient increases in calcium levels suggesting key roles for calcium and ROS during the early NF perception.Key words: reactive oxygen species, root hair, nodulation, NADP(H) oxidase, nod factorsThe symbiotic interaction between rhizobia and plant legumes entails a molecular dialogue. Legume roots exude flavonoids that induce the expression of bacterial nodulation genes, which encode proteins involved in the synthesis and secretion of Nod factors (NFs) (reviewed in ref. 2). NFs are perceived by the plant root, which in turn exhibit several responses such as ion fluxes (K+, Cl, Ca2+, H+), cytoplasmic alkalinization, cytoplasmic calcium oscillations ([Ca2+] c), and gene expression,3 leading to bacterial invasion and nodule formation.In the last decade, convincing evidences have appeared indicating that in plants as well as in animals, an elevated production and accumulation of reactive oxygen species (ROS) accompanies various processes, such as: development, hypersensitive response, hormone action, gravitropism and stress responses.4 In support of these findings, Ca2+-permeable channel modulation by ROS was demonstrated in Vicia faba guard cells and recently in Arabidopsis, where ROS regulated calcium channels are also active in sustaining plant cell growth.5,6It has been widely reported that in plants, the ROS production accumulate in the apical region of tip growing cells such as pollen tubes and root hair cells, as well as Fucus and fungal hyphae.69 Furthermore, patch-clamp studies showed that ROS can regulate calcium channels.6 Arabidopsis mutants in NADPH oxidase are characterized by stunted or absence of root hairs,10 and fail to exhibit the tip-localized ROS gradient. Since NADPH oxidase contains calcium ion-binding EF hand domains, it is plausible that its regulation is calcium dependent. However, the role of calcium ions in NADPH oxidase activation in root hair cells remains unknown.In legumes, ROS levels are elevated during the rhizobial infection, specifically in the developed nodules,11 as well as during the preceding stages, such as the infection thread formation,12,13 a process that is usually initiated after 72 h after Rhizobium inoculation. Furthermore, it has been proposed that the failure to produce and maintain proper ROS concentrations results in infection thread abortion.14 Conversely, other studies reported a decrease in intracellular ROS levels in root hair cells treated with NFs.15,16 However, these studies were done at different time scales and the processes observed were different; while Shaw et al., (2003) and Lohar et al., (2007) made the observations on ROS levels in root hair cells several minutes after exposure to NFs during the swelling response, Santos et al., (2001) and Ramu et al., (2002) looked at the root hairs forming infection threads induced by Rhizobium inoculation. Using Phaseolus vulgaris, we recently demonstrated that living root hair cells show changes in ROS levels within few seconds after NFs addition.1 This work was carried out by using a ROS sensitive dye (CM-H2DCFDA, Invitrogen). This fluorescent dye has been widely used as a ROS indicator dye; nevertheless, limitations are encountered when it is used as a single wavelength dye. This is due to the accessible volume in root hair cells, which usually present an increased cytoplasmic accumulation at the tip region. However, we have circumvented this problem by using the ROS sensitive CM-H2DCFDA dye in combination with a reference dye (Cell Tracker Red, Invitrogen) to establish a pseudo-ratiometric analysis. This allowed us to visualize the subcellular distribution of the ROS signal in living root hair cells, which now can be described as a tip-localized gradient.In summary, the production and distribution of intracellular ROS levels were analyzed in P. vulgaris growing root hair cells as well as their responses to NFs. We found that ROS levels were dramatically and transiently increased within a few seconds after NFs treatment. This response is specific for NFs, and clearly distinct from those observed after the addition of chitin oligomers (pentamers).1 It is possible that the modulation of ROS production in epidermal cells enables rhizobia to enter the host plant without triggering a hypersensitive response. A failure to control ROS elevation might provoke an infection thread abortion (Vasse et al., 1993). Root hair cells responded to the presence of NFs with a transient ROS signature signal, in a different way than observed after chitosan treatment. These results suggest that within seconds these cells are able to perceive differentially, symbiotic signals from pathogenic fungal elicitors. Therefore, this transient ROS signature specifically triggered by NFs could play a key role in modulating the rhizobia-legume interaction.In root hairs, the NF-induced transient increase in the ROS levels, which is initiated 15 sec after NFs treatment clearly precedes the onset of the observed [Ca2+]c oscillations in the perinuclear region that occur 10–15 min later. Therefore, the transient ROS response can be considered as one of the earliest responses to NFs. However, these ROS changes correlate spatially and temporally with the described calcium influx at the tip region of root hair cells responding to NFs (Fig. 1), suggesting a connection for both the players during the NFs signal perception. So far we do not know if the ROS response is earlier or subsequent to the [Ca2+]c increases (fluxes) observed at the tip region of legume root hair cells treated with NFs. However, it is possible that a feed back response is established as suggested in Arabidopsis root hair cells.17 In this scenario, the transiently induced ROS changes observed after NFs treatment could stimulate the calcium channels located at the tip region (Fig. 1, inset). This would result in the transiently increased [Ca2+]c levels observed at the tip region after NFs treatment, which in turn could activate the NAD(P)H oxidase leading to the generation of more ROS. The generated ROS could then stimulate the calcium channels at the tip region triggering signalling cascade.Open in a separate windowFigure 1Model on the earliest responses observed at the tip of root hair cells after NFs treatment. Note that [Ca2+]c and ROS at the tip region respond with a transient changes in their levels within a few seconds after NFs treatment, while [Ca2+]c oscillations in the perinuclear region follow after 10–15 min. Inset depicts a model where the generated ROS could activate the calcium channels located at the tip region and this in turn could generate an increase in [Ca2+]c. Increased [Ca2+]c then activates the NAD(P)H oxidase maintaining increased ROS levels.  相似文献   

7.
The incorporation of a fusion of green fluorescent protein and tubulin-alpha 6 from Arabidopsis thaliana in root hairs of Lotus japonicus has allowed us to visualize and quantify the dynamic parameters of the cortical microtubules in living root hairs. Analysis of individual microtubule turnover in real time showed that only plus polymer ends contributed to overall microtubule dynamicity, exhibiting dynamic instability as the main type of microtubule behavior in Lotus root hairs. Comparison of the four standard parameters of in vivo dynamic instability--the growth rate, the disassembly rate, and the frequency of transitions from disassembly to growth (rescue) and from growth to disassembly (catastrophe)--revealed that microtubules in young root hairs were more dynamic than those in mature root hairs. Either inoculation with Mesorhizobium loti or purified M. loti lipochitin oligosaccharide signal molecules (Nod factors) significantly affected the growth rate and transition frequencies in emerging and growing root hairs, making microtubules less dynamic at a specific window after symbiotic inoculation. This response of root hair cells to rhizobial Nod factors is discussed in terms of the possible biological significance of microtubule dynamics in the early signaling events leading to the establishment and progression of the globally important Rhizobium/legume symbiosis.  相似文献   

8.
The establishment of rhizobia as nitrogen-fixing endosymbionts within legume root nodules requires the disruption of the plant cell wall to breach the host barrier at strategic infection sites in the root hair tip and at points of bacterial release from infection threads (IT) within the root cortex. We previously found that Rhizobium leguminosarum bv. trifolii uses its chromosomally encoded CelC2 cellulase to erode the noncrystalline wall at the apex of root hairs, thereby creating the primary portal of its entry into white clover roots. Here, we show that a recombinant derivative of R. leguminosarum bv. trifolii ANU843 that constitutively overproduces the CelC2 enzyme has increased competitiveness in occupying aberrant nodule-like root structures on clover that are inefficient in nitrogen fixation. This aberrant symbiotic phenotype involves an extensive uncontrolled degradation of the host cell walls restricted to the expected infection sites at tips of deformed root hairs and significantly enlarged infection droplets at termini of wider IT within the nodule infection zone. Furthermore, signs of elevated plant host defense as indicated by reactive oxygen species production in root tissues were more evident during infection by the recombinant strain than its wild-type parent. Our data further support the role of the rhizobial CelC2 cell wall-degrading enzyme in primary infection, and show evidence of its importance in secondary symbiotic infection and tight regulation of its production to establish an effective nitrogen-fixing root nodule symbiosis.  相似文献   

9.
10.
It is shown that root hairs of most aquatic plants have a helicoidal cell-wall texture. Cell walls of root hairs of the aquatic/marshland plant Ranunculus lingua, however, have an axial microfibril alignment. The occurrence of a helicoidal wall texture is not limited to root hairs of aquatic plants: the terrestrial plant Zebrina purpusii has a helicoidal root-hair wall texture, too. With the exception of the grasses, the occurrence of root hairs with helicoidal cell walls pertains to species with predetermined root-hair-forming cells, trichoblasts. The rotation mode of the helicoid is species-specific. The average angle between fibrils of adjacent lamellae varies from 23° to 40°. In Hydrocharis morsus-ranae, cortical microtubules have a net-axial orientation and thus do not parallel nascent microfibrils. The deposition of the helicoidal cell wall is discussed.In honour of Prof. Dr. H.F Linskens (Nijmegen) on the occasion of his 65th birthday  相似文献   

11.
The alpha-factor mating pheromone induces a transient intracellular alkalinization of MATa cells within minutes after exposure to the pheromone, and is the earliest biochemical event that can be identified subsequent to the exposure. Dissipation of the pheromone induced pH gradient, using 2,4-dinitrophenol or sodium orthovanadate, does not inhibit the biological response of the yeast to the pheromone such as mating and 'schmoo' formation. These findings suggest that the pheromone mediated pH change per se is not a part of the transmembrane signalling but rather the consequence of a biochemical reaction triggered by the alpha-pheromone interaction with its receptor and may have a permissive effect on the pheromonal response. The cdc25ts mutation causes MATa cells to become nonresponsive to alpha-factor subsequent to a shift to the restrictive temperature, suggesting that the CDC25 gene product participates in the pheromone response pathway.  相似文献   

12.
13.
14.
Allelopathic interaction between plants is thought to involve the release of phytotoxic allelochemicals by one species, thus inhibiting the growth of neighboring species in competition for limited resources. Sorgoleone represents one of the more potent allelochemicals characterized to date, and its prolific production in root hair cells of Sorghum spp. has made the investigation of its biosynthetic pathway ideally-suited for functional genomics investigations. Through the use of a recently-released EST data set generated from isolated Sorghum bicolor root hair cells, significant inroads have been made toward the identification of genes and the corresponding enzymes involved in the biosynthesis of this compound in root hairs. Here we provide additional information concerning our recent report on the identification of a 5-n-alk(en) ylresorcinol utilizing O-methyltransferase, as well as other key enzymes likely to participate in the biosynthesis of this important allelochemical.Key words: allelopathy, sorgoleone, root hair, EST, O-methyltransferase  相似文献   

15.
16.
The microtubular cytoskeleton plays an important role in the development of tip-growing plant cells, but knowledge about its dynamics is incomplete. In this study, root hairs of the legume Medicago truncatula have been chosen for a detailed analysis of microtubular cytoskeleton dynamics using GFP-MBD and EB1-YFP as markers and 4D imaging. The microtubular cytoskeleton appears mainly to be composed of bundles which form tracks along which new microtubules polymerise. Polymerisation rates of microtubules are highest in the tip of growing root hairs. Treatment of root hairs with Nod factor and latrunculin B result in a twofold decrease in polymerisation rate. Nonetheless, no direct, physical interaction between the actin filament cytoskeleton and microtubules could be observed. A new picture of how the plant cytoskeleton is organised in apically growing root hairs emerges from these observations, revealing similarities with the organisation in other, non-plant, tip-growing cells.  相似文献   

17.
In Rhizobium japonicum strain Nitragin 61A76, morphologically distinct types of bacteria were found to occur in yeast extract-mannitol broth cultures, at both mid-log and stationary phases. Of these only the capsular form, characterized by a smooth cell envelope, storage granules (glycogen and poly-beta-hydroxybutyric acid), and an amorphous extracellular capsule, bound soybean lectin. The binding site was localized in the capsular material. Less than 1% of the bacterial population differentiated into these capsular forms, which were also able to attach to the soybean root hair surface.  相似文献   

18.
Anne Mie C. Emons 《Planta》1985,163(3):350-359
Particle arrangement in the plasma membrane during cell wall formation was investigated by means of the double-replica technique in root hairs of Equisetum hyemale. Particle density in the protoplasmic fracture face of the plasma membrane was higher than in the extraplasmic fracture face. Apart from randomly distributed particles, particle rosettes were visible in the PF face of the plasma membrane. The rosettes consisted of six particles arranged in a circle and had an outer diameter of approx. 26 nm. No gradient in the number of rosettes was found, which agrees with micrifibril deposition taking place over the whole hair. The particle rosettes were found individually, which might indicate that they spin out thin microfibrils as found in higher-plant cell walls. Indeed microfibril width in these walls, measured in shadowed preparations, is 8.5±1.5 nm. It is suggested that the rosettes are involved in microfibril synthesis. Non-turgid cells lacked microfibril imprints in the plasma membrane and no particle rosettes were present on their PF face. Fixation with glutaraldehyde caused, probably as a result of plasmolysis, the microfibril imprints to disappear together with the particle rosettes. The PF face of the plasma membrane of non-turgid hairs sometimes showed domains in which the intramembrane particles were aggregated in a hexagonal pattern. Microfibril orientation during deposition will be discussed.Abbreviations EF extraplasmic fracture face - PF protoplasmic fracture face  相似文献   

19.
20.
The microtubule (MT) cytoskeleton is an important part of the tip-growth machinery in legume root hairs. Here we report the effect of Nod factor (NF) on MTs in root hairs of Medicago truncatula. In tip-growing hairs, the ones that typically curl around rhizobia, NF caused a subtle shortening of the endoplasmic MT array, which recovered within 10 min, whereas cortical MTs were not visibly affected. In growth-arresting root hairs, endoplasmic MTs disappeared shortly after NF application, but reformed within 20 min, whereas cortical MTs remained present in a high density. After NF treatment, growth-arresting hairs were swelling at their tips, after which a new outgrowth formed that deviated with a certain angle from the former growth axis. MT depolymerization with oryzalin caused a growth deviation similar to the NF; whereas, combined with NF, oryzalin increased and the MT-stabilizing drug taxol suppressed NF-induced growth deviation. The NF-induced disappearance of the endoplasmic MTs correlated with a loss of polar cytoarchitecture and straight growth directionality, whereas the reappearance of endoplasmic MTs correlated with the new set up of polar cytoarchitecture. Drug studies showed that MTs are involved in determining root hair elongation in a new direction after NF treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号