首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the functional role of the ArdA antirestriction motif (130-LLADVPETVALYFD-143) conserved among all known Ard (alleviation of restriction of DNA) proteins, which are encoded by self-transmissible plasmids and specifically inhibit type I restriction–modification systems. Conserved residues of the motif were individually changed, and the resulting mutants tested for in vivo activity. Hydrophobic L130, L131, and V138 were substituted with negatively charged E; negatively charged D133, E136, and D143 substituted with hydrophobic V; and D127, D150, and D154 neighboring the antirestriction motif substituted with V. Four substitutions (L130E, L131E, V138E, and D143V) substantially (25–1000 times) reduced the ArdA activity. The other substitutions within or beyond the motif had no appreciable effect. Substitutions L130A and L131A each reduced the ArdA activity 10- to 20-fold, indicating that high hydrophobicity of L130 and L131 is important for the ArdA function. Thus, the antirestriction role of ArdA is indeed due to its conserved motif.  相似文献   

2.
A number of mutant forms of the antirestriction protein ArdA encoded by the ardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction--modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the "antirestriction motif" with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction--modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

3.
A number of mutant forms of the antirestriction protein ArdA encoded by theardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction–modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the antirestriction motif with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction–modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

4.
The amino acid residues essential for the enzymatic activity of bacteriophage T5 deoxyribonucleoside monophosphate kinase were determined using a computer model of the enzyme active site. By site-directed mutagenesis, cloning, and gene expression in E. coli, a series of proteins were obtained with single substitutions of the conserved active site amino acid residues—S13A, D16N, T17N, T17S, R130K, K131E, Q134A, G137A, T138A, W150F, W150A, D170N, R172I, and E176Q. After purification by ion exchange and affine chromatography electrophoretically homogeneous preparations were obtained. The study of the enzymatic activity with natural acceptors of the phosphoryl group (dAMP, dCMP, dGMP, and dTMP) demonstrated that the substitutions of charged amino acid residues of the NMP binding domain (R130, R172, D170, and E176) caused nearly complete loss of enzymatic properties. It was found that the presence of the OH-group at position 17 was also important for the catalytic activity. On the basis of the analysis of specific activity variations we assumed that arginine residues at positions 130 and 172 were involved in the binding to the donor γ-phosphoryl and acceptor α-phosphoryl groups, as well as the aspartic acid residue at position 16 of the ATP-binding site (P-loop), in the binding to some acceptors, first of all dTMP. Disproportional changes in enzymatic activities of partially active mutants, G137A, T138A, T17N, Q134A, S13A, and D16N, toward different substrates may indicate that different amino acid residues participate in the binding to various substrates.  相似文献   

5.
Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.  相似文献   

6.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

7.
Eicosanoid receptors exhibit a highly conserved ERY(C)XXV(I)XXPL sequence in the second intracellular loop. The carboxyl end of this motif contains a bulky hydrophobic amino acid (L,I,V, or F). In human thromboxane A2 receptor (TXA(2)R), phenylalanine 138 is located at the carboxyl end of this highly conserved motif. This study examined the function of the F138 in G protein coupling. F138 was mutated to aspartic acid (D) and tyrosine (Y), respectively. Both mutants F138D and F138Y showed similar ligand binding activity to that of the wild type TXA(2)R. The Kd and Bmax values of either mutant were comparable to those of the wild type receptor. However, both mutants showed significant impairment of agonist induced Ca(2+) signaling and phospholipase C activation. These results suggest that the F138 plays a key role in G protein coupling.  相似文献   

8.
PomA is a membrane protein that is one of the essential components of the sodium-driven flagellar motor in Vibrio species. The cytoplasmic charged residues of Escherichia coli MotA, which is a PomA homolog, are believed to be required for the interaction of MotA with the C-terminal region of FliG. It was previously shown that a PomA variant with neutral substitutions in the conserved charged residues (R88A, K89A, E96Q, E97Q, and E99Q; AAQQQ) was functional. In the present study, five other conserved charged residues were replaced with neutral amino acids in the AAQQQ PomA protein. These additional substitutions did not affect the function of PomA. However, strains expressing the AAQQQ PomA variant with either an L131F or a T132M substitution, neither of which affected motor function alone, exhibited a temperature-sensitive (TS) motility phenotype. The double substitutions R88A or E96Q together with L131F were sufficient for the TS phenotype. The motility of the PomA TS mutants immediately ceased upon a temperature shift from 20 to 42 degrees C and was restored to the original level approximately 10 min after the temperature was returned to 20 degrees C. It is believed that PomA forms a channel complex with PomB. The complex formation of TS PomA and PomB did not seem to be affected by temperature. Suppressor mutations of the TS phenotype were mapped in the cytoplasmic boundaries of the transmembrane segments of PomA. We suggest that the cytoplasmic surface of PomA is changed by the amino acid substitutions and that the interaction of this surface with the FliG C-terminal region is temperature sensitive.  相似文献   

9.
Rhee MH  Nevo I  Levy R  Vogel Z 《FEBS letters》2000,466(2-3):300-304
The DRY motif, at the junction of transmembrane helix 3 and intracellular loop 2 of G protein-coupled receptors, is highly conserved. Mutations were introduced into the CB2 cannabinoid receptor to study the role of this motif in CB2 signaling. D mutations (DRY130-132AAA and D130A) markedly reduced binding of cannabinoid agonists, while no significant reduction was observed with R131A or Y132A. Mutating R (R131A) only partially reduced, and mutating Y (Y132A) more efficiently reduced the cannabinoid-induced inhibition of adenylyl cyclase. Thus, in CB2, D130 is involved in agonist binding, whereas Y seems to have a role in receptor downstream signaling.  相似文献   

10.
The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating.  相似文献   

11.
Genes encoding antirestriction proteins are found in transmissble plasmids (ardABC) and bacteriophage genomes (ocr, darA). Antirestriction proteins inhibit type I restriction-modification enzymes and thus protect the unmodified plasmid or phage DNA from degradation. Antirestriction proteins belong to the family of DNA-mimicry proteins, whose spatial structure mimics the B-form of DNA. Based on an analysis of the mutant forms of ArdA and Ocr obtained by site-directed mutagenesis and the native form of ArdA that specifically inhibit type I restriction enzymes but do not affect their methylase activity, a model is proposed to describe the complex formation between an antirestriction protein and a type I restriction-modification enzyme (R2M2S): antirestriction proteins can displace a DNA strand from its binding sites in the S subunit (which contacts a specific site on DNA) and in the R subunit (which translocates the DNA strand and cleaves it). Antirestriction and antimodification activities of ArdA and Ocr as a function of ardA and ocr expression levels were studied by cloning the genes under a strictly regulated promoter.  相似文献   

12.
Because charged residues at the intracellular ends of transmembrane helix (TMH) 2 and TMH3 of G protein-coupled receptors (GPCRs) affect signaling, we performed mutational analysis of these residues in the constitutively signaling Kaposi's sarcoma-associated herpesvirus GPCR (KSHV-GPCR). KSHV-GPCR contains the amino acid sequence Val-Arg-Tyr rather than the Asp/Glu-Arg-Tyr ((D/E)RY) motif at the intracellular end of TMH3. Mutation of Arg-143 to Ala (R143A) or Gln (R143Q) abolished constitutive signaling whereas R143K exhibited 50% of the basal activity of KSHV-GPCR. R143A was not stimulated by agonist, whereas R143Q was stimulated by growth-related oncogene-alpha, and R143K, similar to KSHV-GPCR, was stimulated further. These findings show that Arg-143 is critical for signal generation in KSHV-GPCR. In other GPCRs, Arg in this position may act as a signaling switch by movement of its sidechain from a hydrophilic pocket in the TMH bundle to a position outside the bundle. In rhodopsin, the Arg of Glu-Arg-Tyr interacts with the adjacent Asp to constrain Arg outside the TMH bundle. V142D was 70% more active than KSHV-GPCR, suggesting that an Arg residue, which is constrained outside the bundle by interacting with Asp-142, leads to a receptor that signals more actively. Because the usually conserved Asp in the middle of TMH2 is not present in KSHV-GPCR, we tested whether Asp-83 at the intracellular end of TMH2 was involved in signaling. D83N and D83A were 110 and 190% more active than KSHV-GPCR, respectively. The double mutant D83A/V142D was 510% more active than KSHV-GPCR. That is, cosubstitutions of Asp-83 by Ala and Val-142 by Asp act synergistically to increase basal signaling. A model of KSHV-GPCR predicts that Arg-143 interacts with residues in the TMH bundle and that the sidechain of Asp-83 does not interact with Arg-143. These data are consistent with the hypothesis that Arg-143 and Asp-83 independently affect the signaling activity of KSHV-GPCR.  相似文献   

13.
14.
Cytochrome bd is a quinol oxidase of Escherichia coli under microaerophilic growth conditions. Coupling of the release of protons to the periplasm by quinol oxidation to the uptake of protons from the cytoplasm for dioxygen reduction generates a proton motive force. On the basis of sequence analysis, glutamates 99 and 107 conserved in transmembrane helix III of subunit I have been proposed to convey protons from the cytoplasm to heme d at the periplasmic side. To probe a putative proton channel present in subunit I of E. coli cytochrome bd, we substituted a total of 10 hydrophilic residues and two glycines conserved in helices I and III-V and examined effects of amino acid substitutions on the oxidase activity and bound hemes. We found that Ala or Leu mutants of Arg9 and Thr15 in helix I, Gly93 and Gly100 in helix III, and Ser190 and Thr194 in helix V exhibited the wild-type phenotypes, while Ala and Gln mutants of His126 in helix IV retained all hemes but partially lost the activity. In contrast, substitutions of Thr26 in helix I, Glu99 and Glu107 in helix III, Ser140 in helix IV, and Thr187 in helix V resulted in the concomitant loss of bound heme b558 (T187L) or b595-d (T26L, E99L/A/D, E107L/A/D, and S140A) and the activity. Glu99 and Glu107 mutants except E107L completely lost the heme b595-d center, as reported for heme b595 ligand (His19) mutants. On the basis of this study and previous studies, we propose arrangement of transmembrane helices in subunit I, which may explain possible roles of conserved hydrophilic residues within the membrane.  相似文献   

15.
RecD is essential for growth at low temperature in the Antarctic psychrotrophic bacterium Pseudomonas syringae Lz4W. To examine the essential nature of its activity, we analyzed wild-type and mutant RecD proteins with substitutions of important residues in each of the seven conserved helicase motifs. The wild-type RecD displayed DNA-dependent ATPase and helicase activity in vitro, with the ability to unwind short DNA duplexes containing only 5' overhangs or forked ends. Five of the mutant proteins, K229Q (in motif I), D323N and E324Q (in motif II), Q354E (in motif III) and R660A (in motif VI) completely lost both ATPase and helicase activities. Three other mutants, T259A in motif Ia, R419A in motif IV and E633Q in motif V exhibited various degrees of reduction in ATPase activity, but had no helicase activity. While all RecD proteins had DNA-binding activity, the mutants of motifs IV and V displayed reduced binding, and the motif II mutant showed a higher degree of binding to ssDNA. Significantly, only RecD variants with in vitro ATPase activity could complement the cold-sensitive growth of a recD-inactivated strain of P. syringae at 4 degrees C. These results suggest that the requirement for RecD at lower temperatures lies in its ATP-hydrolyzing activity.  相似文献   

16.
The ArdA antirestriction protein of the IncB plasmid R16 selectively inhibited the restriction activity of EcoKI, leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The results are consistent with the hypothesis that ArdA functions in bacterial conjugation to allow an unmodified plasmid to evade restriction in the recipient bacterium and yet acquire cognate modification.  相似文献   

17.
He Y  Liu S  Li J  Lu H  Qi Z  Liu Z  Debnath AK  Jiang S 《Journal of virology》2008,82(22):11129-11139
The fusogenic human immunodeficiency virus type 1 (HIV-1) gp41 core structure is a stable six-helix bundle formed by its N- and C-terminal heptad repeat sequences. Notably, the negatively charged residue Asp632 located at the pocket-binding motif in the C-terminal heptad repeat interacts with the positively charged residue Lys574 in the pocket formation region of the N-terminal heptad repeat to form a salt bridge. We previously demonstrated that the residue Lys574 plays an essential role in six-helix bundle formation and virus infectivity and is a key determinant of the target for anti-HIV fusion inhibitors. In this study, the functionality of residue Asp632 has been specifically characterized by mutational analysis and biophysical approaches. We show that Asp632 substitutions with positively charged residues (D632K and D632R) or a hydrophobic residue (D632V) could completely abolish Env-mediated viral entry, while a protein with a conserved substitution (D632E) retained its activity. Similar to the Lys574 mutations, nonconserved substitutions of Asp632 also severely impaired the α-helicity, stability, and conformation of six-helix bundles as shown by N36 and C34 peptides as a model system. Furthermore, nonconserved substitutions of Asp632 significantly reduced the potency of C34 to sequestrate six-helix bundle formation and to inhibit HIV-1-mediated cell-cell fusion and infection, suggesting its importance for designing antiviral fusion inhibitors. Taken together, these data suggest that the salt bridge between the N- and C-terminal heptad repeat regions of the fusion-active HIV-1 gp41 core structure is critical for viral entry and inhibition.  相似文献   

18.
Efficient catalysis in the second step of the pyruvate dehydrogenase (E1) component reaction requires a lipoyl group to be attached to a lipoyl domain that displays appropriately positioned specificity residues. As substrates, the human dihydrolipoyl acetyltransferase provides an N-terminal (L1) and an inner (L2) lipoyl domain. We evaluated the specificity requirements for the E1 reaction with 27 mutant L2 (including four substitutions for the lipoylated lysine, Lys(173)), with three analogs substituted for the lipoyl group on Lys(173), and with selected L1 mutants. Besides Lys(173) mutants, only E170Q mutation prevented lipoylation. Based on analysis of the structural stability of mutants by differential scanning calorimetry, alanine substitutions of residues with aromatic side chains in terminal regions outside the folded portion of the L2 domain significantly decreased the stability of mutant L2, suggesting specific interactions of these terminal regions with the folded domain. E1 reaction rates were markedly reduced by the following substitutions in the L2 domain (equivalent site-L1): L140A, S141A (S14A-L1), T143A, E162A, D172N, and E179A (E52A-L1). These mutants gave diverse changes in kinetic parameters. These residues are spread over >24 A on one side of the L2 structure, supporting extensive contact between E1 and L2 domain. Alignment of over 40 lipoyl domain sequences supports Ser(141), Thr(143), and Glu(179) serving as specificity residues for use by E1 from eukaryotic sources. Extensive interactions of the lipoyl-lysine prosthetic group within the active site are supported by the limited inhibition of E1 acetylation of native L2 by L2 domains altered either by mutation of Lys(173) or enzymatic addition of lipoate analogs to Lys(173). Thus, efficient use by mammalian E1 of cognate lipoyl domains derives from unique surface residues with critical interactions contributed by the universal lipoyl-lysine prosthetic group, key specificity residues, and some conserved residues, particularly Asp(172) adjacent to Lys(173).  相似文献   

19.
As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.  相似文献   

20.
In G protein-coupled receptors (GPCRs), the interaction between the cytosolic ends of transmembrane helix 3 (TM3) and TM6 was shown to play an important role in the transition from inactive to active states. According to the currently prevailing model, constructed for rhodopsin and structurally related receptors, the arginine of the conserved "DRY" motif located at the cytosolic end of TM3 (R3.50) would interact with acidic residues in TM3 (D/E3.49) and TM6 (D/E6.30) at the resting state and shift out of this polar pocket upon agonist stimulation. However, 30% of GPCRs, including all chemokine receptors, contain a positively charged residue at position 6.30 which does not support an interaction with R3.50. We have investigated the role of R6.30 in this receptor family by using CCR5 as a model. R6.30D and R6.30E substitutions, which allow an ionic interaction with R3.50, resulted in an almost silent receptor devoid of constitutive activity and strongly impaired in its ability to bind chemokines but still able to internalize. R6.30A and R6.30Q substitutions, allowing weaker interactions with R3.50, preserved chemokine binding but reduced the constitutive activity and the functional response to chemokines. These results indicate that the constitutive and ligand-promoted activity of CCR5 can be modified by modulating the interaction between the DRY motif in TM3 and residues in TM6 suggesting that the overall structure and activation mechanism are well conserved in GPCRs. However, the molecular interactions locking the inactive state must be different in receptors devoid of D/E6.30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号