首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve injury-induced allodynia and the underlying cascades of the nAChR-mediated antiallodynic effect. In this study, we attempted to characterize the actions of nicotine at the spinal level against mechanical allodynia in an animal model of neuropathic pain, tibial nerve transection (TNT) in rats. It was found that the intrathecal injection of nicotine, RJR-2403, a selective alpha4beta2 nAChR agonist, and choline, a selective alpha7 nAChR agonist, produced an antinociceptive effect on the TNT-induced allodynia. The actions of nicotine were almost completely suppressed by pretreatment with mecamylamine, a non-selective nicotinic antagonist, or dihydro-beta-erythroidine, a selective alpha4beta2 nAChR antagonist, and partially reversed by pretreatment with methyllycaconitine, a selective alpha7 nAChR antagonist. Furthermore, pretreatment with strychnine, a glycine receptor antagonist, blocked the antinociception induced by nicotine, RJR-2403, and choline. On the other hand, the GABAA antagonist bicuculline did not reverse the antiallodynic effect of nicotine. Together, these results indicate that the alpha4beta2 and alpha7 nAChR system, by enhancing the activities of glycinergic neurons at the spinal level, exerts a suppressive effect on the nociceptive transduction in neuropathic pain.  相似文献   

2.
Dopaminergic nerve endings in the corpus striatum possess nicotinic (nAChRs) and muscarinic cholinergic receptors (mAChRs) mediating release of dopamine (DA). Whether nAChRs and mAChRs co-exist and interact on the same nerve endings is unknown. We here investigate on these possibilities using rat nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed in superfusion to cholinergic receptor ligands. The mixed nAChR–mAChR agonists acetylcholine (ACh) and carbachol provoked [3H]DA release partially sensitive to the mAChR antagonist atropine but totally blocked by the nAChR antagonist mecamylamine. Addition of the mAChR agonist oxotremorine at the minimally effective concentration of 30 μmol/L, together with 3, 10, or 100 μmol/L (−)nicotine provoked synergistic effect on [3H]DA overflow. The [3H]DA overflow elicited by 100 μmol/L (−)nicotine plus 30 μmol/L oxotremorine was reduced by atropine down to the release produced by (−)nicotine alone and it was abolished by mecamylamine. The ryanodine receptor blockers dantrolene or 8-bromo-cADP-ribose, but not the inositol 1,4,5-trisphosphate receptor blocker xestospongin C inhibited the (−)nicotine/oxotremorine evoked [3H]DA overflow similarly to atropine. This overflow was partly sensitive to 100 nmol/L methyllycaconitine which did not prevent the synergistic effect of (−)nicotine/oxotremorine. Similarly to (−)nicotine, the selective α4β2 nAChR agonist RJR2403 exhibited synergism when added together with oxotremorine. To conclude, in rat nucleus accumbens, α4β2 nAChRs exert a permissive role on the releasing function of reportedly M5 mAChRs co-existing on the same dopaminergic nerve endings.  相似文献   

3.
Microinjections (50 nl) of nicotine (0.01-10 microM) into the nucleus of the solitary tract (NTS) of adult, urethan-anesthetized, artificially ventilated, male Wistar rats, elicited decreases in blood pressure and heart rate. Prior microinjections of alpha-bungarotoxin (alpha-BT) and alpha-conotoxin ImI (specific toxins for nicotinic receptors containing alpha7 subunits) elicited a 20-38% reduction in nicotine responses. Similarly, prior microinjections of hexamethonium, mecamylamine, and alpha-conotoxin AuIB (specific blockers or toxin for nicotinic receptors containing alpha3beta4 subunits) elicited a 47-79% reduction in nicotine responses. Nicotine responses were completely blocked by prior sequential microinjections of alpha-BT and mecamylamine into the NTS. Complete blockade of excitatory amino acid receptors (EAARs) in the NTS did not attenuate the responses to nicotine. It was concluded that 1) the predominant type of nicotinic receptor in the NTS contains alpha3beta4 subunits, 2) a smaller proportion contains alpha7 subunits, 3) the presynaptic nicotinic receptors in the NTS do not contribute to nicotine-induced responses, and 4) EAARs in the NTS are not involved in mediating responses to nicotine.  相似文献   

4.
The trigeminal nerve responds to a wide variety of irritants. Trigeminal nerve fibers express several receptors that respond to chemicals, including TRPV1 (vanilloid) receptors, acid-sensing ion channels, P2X (purinergic) receptors, and nicotinic acetylcholine receptors. In order to assess whether TRPV1 plays a role in responses to a broad array of substances, TRPV1 (along with green fluorescent protein) was expressed in human embyonic kidney cells (HEK) 293t cells which were then stimulated with diverse trigeminal irritants. Calcium imaging was used to measure responses to capsaicin, amyl acetate, cyclohexanone, acetic acid, toluene, benzaldehyde, (-)-nicotine, (R)-(+)-limonene, (R)-(-)-carvone, and (S)-(+)-carvone. Three irritants (acetic acid and the 2 carvones) stimulated nontransfected controls. Two irritants (capsaicin and cyclohexanone) stimulated only transfected cells. The response could be eliminated with capsazepine, a TRPV1 blocker. The 5 remaining irritants were nonstimulatory in both nontransfected and transfected cells. Because all the compounds tested on HEK cells elicited neural responses from the ethmoid branch of the trigeminal nerve in rats, the 5 nonstimulatory compounds must do so by a non-TRPV1 receptor. These results suggest that TRPV1 serves as a receptor for both cyclohexanone and capsaicin in trigeminal nerve endings.  相似文献   

5.
The existence on glutamatergic nerve endings of nicotinic acetylcholine receptors (nAChRs) mediating enhancement of glutamate release has often been suggested but not demonstrated directly. Here, we study the effects of nAChR agonists on [3 H]-d-aspartate ([3 H]-d-ASP) release from synaptosomes superfused in conditions known to prevent indirect effects. Nicotinic receptor agonists, while unable to modify the basal [3 H]-d-ASP release from human neocortex or rat striatal synaptosomes, enhanced the Ca2+ -dependent exocytotic release evoked by K+ (12 mm) depolarization. Their rank order of potency were anatoxin-a > epibatidine > nicotine > ACh (+ atropine). The anatoxin-a effect, both in human and rat synaptosomes, was antagonized by mecamylamine, alpha-bungarotoxin or methyllycaconitine. The basal release of [3 H]ACh from human cortical synaptosomes was increased by (-)-nicotine (EC50 = 1.16 +/- 0.33 microm) or by ACh plus atropine (EC50 = 2.0 +/- 0.04 microm). The effect of ACh plus atropine was insensitive to alpha-bungarotoxin, methyllycaconitine or alpha-conotoxin MII, whereas it was totally antagonized by mecamylamine or dihydro-beta-erythroidine. To conclude, glutamatergic axon terminals in human neocortex and in rat striatum possess alpha7* nicotinic heteroreceptors mediating enhancement of glutamate release. Release-enhancing cholinergic autoreceptors in human neocortex are nAChRs with a pharmacological profile compatible with the alpha4beta2 subunit combination.  相似文献   

6.
Extracellular signal-regulated kinase (ERK) is activated in vivo in a number of brain areas by nicotine and other drugs of abuse. Here we show that nicotine stimulation of cultured mouse cortical neurons leads to a robust induction of ERK phosphorylation that is dependent on nicotine concentration and duration of exposure. Calcium/calmodulin-dependent protein kinase II activity is necessary for nicotine-induced ERK phosphorylation and neither cAMP-dependent protein kinase or protein kinase C appear to be involved. Activity of glutamate receptors, L-type voltage-gated calcium channels, and voltage-gated sodium channels are also required for nicotine-induced ERK phosphorylation. Nicotine-induced ERK phosphorylation was inhibited by high concentrations of mecamylamine, however it was not blocked by other broad nicotinic acetylcholine receptor (nAChR) inhibitors (including hexamethonium and chlorisondamine) or nAChR subtype selective inhibitors (such as methyllycaconitine, alpha-bungarotoxin, dihydro-beta-erythroidine, and alpha-conotoxin Au1B). In accord with these pharmacological results, nicotine-induced ERK phosphorylation was normal in primary cultures made from beta2 or alpha7 nAChR subunit knockout mice. The alpha3/beta4 nAChR agonist cytisine did not induce ERK phosphorylation suggesting that alpha3/beta4 nAChRs were not involved in this process. Taken together, these data define a necessary role for glutamatergic signaling and calcium/calmodulin-dependent protein kinase II in nicotine-induced ERK phosphorylation in cortical neurons and do not provide evidence for the involvement of classical nAChRs.  相似文献   

7.
Pulmonary neuroepithelial bodies (NEB) are presumed airway chemoreceptors involved in respiratory control, especially in the neonate. Nicotine is known to affect both lung development and control of breathing. We report expression of functional nicotinic acetylcholine receptors (nAChR) in NEB cells of neonatal hamster lung using a combination of morphological and electrophysiological techniques. Nonisotopic in situ hybridization method was used to localize mRNA for the beta 2-subunit of nAChR in NEB cells. Double-label immunofluorescence confirmed expression of alpha 4-, alpha 7-, and beta 2-subunits of nAChR in NEB cells. The electrophysiological characteristics of nAChR in NEB cells were studied using the whole cell patch-clamp technique on fresh lung slices. Application of nicotine ( approximately 0.1-100 microM) evoked inward currents that were concentration dependent (EC50 = 3.8 microM; Hill coefficient = 1.1). ACh (100 microM) and nicotine (50 microM) produced two types of currents. In most NEB cells, nicotine-induced currents had a single desensitizing component that was blocked by mecamylamine (50 microM) and dihydro-beta-erythroidine (50 microM). In some NEB cells, nicotine-induced current had two components, with fast- and slow-desensitizing kinetics. The fast component was selectively blocked by methyllcaconitine (MLA, 10 nM), whereas both components were inhibited by mecamylamine. Choline (0.5 mM) also induced an inward current that was abolished by 10 nM MLA. These studies suggest that NEB cells in neonatal hamster lung express functional heteromeric alpha 3 beta 2, alpha 4 beta 2, and alpha 7 nAChR and that cholinergic mechanisms could modulate NEB chemoreceptor function under normal and pathological conditions.  相似文献   

8.
Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different alpha4beta2 subunit ratios (1alpha:4beta, 2alpha:3beta, and 4alpha:1beta) expressed in Xenopus oocytes. The presence of alpha4 subunit in the oocyte plasmatic membrane increased linearly with the amount of alpha4 mRNA injected. nAChR function and expression were assessed during acute and after chronic nicotine exposure using a two-electrode voltage clamp and whole-mount immunofluorescence assay along with confocal imaging for the detection of the alpha4 subunit. The 2alpha4:3beta2 subunit ratio displayed the highest ACh sensitivity. Nicotine dose-response curves for the 1alpha4:4beta2 and 2alpha4:3beta2 subunit ratios displayed a biphasic behavior at concentrations ranging from 0.1 to 300 microm. A biphasic curve for 4alpha4:1beta2 was obtained at nicotine concentrations higher than 300 microm. The 1alpha4:4beta2 subunit ratio exhibited the lowest ACh- and nicotine-induced macroscopic current, whereas 4alpha4:1beta2 presented the largest currents at all agonist concentrations tested. Desensitization by acute nicotine exposure was more evident as the ratio of beta2:alpha4 subunits increased. All three alpha4beta2 subunit ratios displayed a reduced state of activation after chronic nicotine exposure. Chronic nicotine-induced up-regulation was obvious only for the 2alpha4: 3beta2 subunit ratio. Our data suggest that the subunit ratio of alpha4beta2 determines the functional state of activation, desensitization, and up-regulation of this neuronal nAChR. We propose that independent structural sites regulate alpha4beta2 receptor activation and desensitization.  相似文献   

9.
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E(rev)) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E(rev) of nicotine-induced current as a function of extracellular Na(+) concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K(+)/Na(+) permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca(2+) concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na(+), which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.  相似文献   

10.
Age-related changes in the mammalian dorsal hippocampus are associated with diminished expression of neuronal nicotinic acetylcholine receptors (nAChR), which is particularly severe in pathologies such as those associated with dementias, including Alzheimer's disease. Because the mouse is a useful model for age-related decline in nAChR expression in the basal forebrain and limbic system, we used immunohistochemistry to examine the influence of long-term (12-month) oral administration of nicotine and/or the cyclooxygenase-2 (COX-2) preferring non-steroidal anti-inflammatory drug (NSAID) NS398 on nAChR alpha4, alpha5, alpha7, and beta4 expression in the C57BL/6 mouse. Inhibitory neurons of the dorsal hippocampus that express nAChRs also constitutively express COX-2 and the peroxisome proliferator-antagonist receptor subtype gamma-2 (PPAR gamma2) which is also a target of NS398. Administration of NS398 correlated with retention of nAChR alpha4 and to a lesser extent nAChR beta4, but not nAChR alpha5 or alpha7, but nicotine exhibited no similar effect. Nicotine and NS398 co-administration abolished the NS398-related effect on nAChR alpha4 retention. These results provide evidence that the interaction during aging between oral administration of nicotine and NSAIDs are not straightforward and could even be antagonistic when combined.  相似文献   

11.
Impairment in nerve growth factor (NGF)-mediated support to basal forebrain cholinergic neurons may represent an initial insult to certain neural cells in Alzheimer's disease (AD). High affinity NGF receptor (TrkA) levels are decreased in AD brains as compared to age-matched control brains. One of the approaches suggested for the treatment of AD exploits the ability of small molecular substances to enhance the expression of endogenous growth factors and/or their receptors. The purpose of this study was to determine whether treatment with nicotine in both in vitro and in vivo settings would increase the neural expression of TrkA receptors. Using a differentiated PC12 neuronal-like system, chronic nicotine treatment increased cell surface TrkA receptor expression. Nicotine's action was blocked by co-treatment with either the non-competitive nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine or with the alpha7 nAChR-selective antagonist methyllycaconitine. Surprisingly, certain low doses of mecamylamine alone also increased TrkA receptor levels. Rats prepared with chronic indwelling intravenous catheters were continuously infused with nicotine to deliver a total dose of 12 mg/kg over 24 hr. This treatment resulted in a significant 44% increase in TrkA receptor expression in the hippocampus. As in the cell experiments, mecamylamine also increased hippocampal TrkA receptor expression. In fact, the ratio of the maximal mecamylamine response to the maximal nicotine response that was measured in vitro, i.e., 0.43 was remarkably similar to that for the in vivo experiment, i.e., 0.47. Since in our previous studies the increase in TrkA expression produced by nicotine was shown to be related to its cytoprotective actions, these results suggest that nicotine's neuroprotective actions might also be mediated through the drug's interaction with central alpha7 nAChRs and subsequent increase in TrkA receptor expression.  相似文献   

12.
(+/-)-3alpha-hydroxy homoepibatidine 4 has been synthesized from the alkaloid scopolamine 5 and its properties as a nicotinic agonist assessed. While still binding strongly, the compound showed reduced agonist potency for the alpha(4)beta(2) nAChR compared with the parent compound epibatidine 1. Compound 4 also displayed generally similar binding and selectivity profiles at alpha(4)beta(2), alpha(2)beta(4), alpha(3)beta(4), and alpha(4)beta(4) nAChR subtypes to those for nicotine.  相似文献   

13.
Recent genetic research has shown that certain forms of epilepsy may arise from mutations in the genes encoding for the alpha7 and alpha4 neuronal nicotinic acetylcholine receptor (nAChR) ion channels. These receptors are also involved with the induction of nicotine-induced seizures. (+/-)-Mecamylamine (Inversine), a classic nAChR antagonist, potently inhibits nicotine-induced seizures. The purpose of the present study was to assess the inhibitory effects of (+/-)-mecamylamine and its stereoisomers on nicotine-induced seizures in male Sprague-Dawley rats. Rats received saline, (+/-)-mecamylamine, R-(-)-mecamylamine, or S-(+)-mecamylamine (s.c.) at doses of 0.1, 0.3, or 1.0 mg/kg 15 minutes prior to nicotine injection, 3.6 mg/kg (s.c.), an optimal dose for seizure induction. Rats were observed for 30 minutes with seizure latency, duration, and severity as primary measures and locomotor activity recorded as a secondary measure at 5-minute intervals. The results indicate that mecamylamine and each of its stereoisomers block nicotine-induced seizures in a dose-related manner and suggest that the S-(+/-)- mecamylamine isomer has inhibitory properties more similar to the racemic than to the R-(-)-mecamylamine isomer. The results of this study may be clinically important for the future design of novel anti-seizure medications.  相似文献   

14.
Studies were conducted to ascertain the temporal and dose-dependent effects of nicotinic ligand exposure on functional activity of different nicotinic acetylcholine receptor (nAChR) subtypes, as expressed by cells of the PC12 rat pheochromocytoma (ganglia-type nAChR) or the TE671/RD human (muscle-type nAChR) clonal line. Chronic (3-72-h) agonist (nicotine or carbamylcholine) treatment of cells led to a complete (TE671) or nearly complete (PC12) loss of functional nAChR responses, which is referred to as "functional inactivation." Some inactivation of nAChR function was also observed for the nicotinic ligands d-tubocurarine (d-TC), mecamylamine, and decamethonium. Half-maximal inactivation of nAChR function was observed within 3 min for TE671 cells and within 10 min for PC12 cells treated with inactivating ligands. Functional inactivation occurred with dose dependencies that could not always be reconciled with those obtained for acute agonist activation of nAChR function or for acute inhibition of those responses by d-TC, decamethonium, or mecamylamine. Treatment of TE671 or PC12 cells with the nicotinic antagonist pancuronium or alcuronium alone had no effect on levels of expression of functional nAChRs. However, evidence was obtained that either of these antagonists protected TE671 cell muscle-type nAChRs or PC12 cell ganglia-type nAChRs from functional inactivation on long-term treatment with agonists. Recovery of TE671 cell nAChR function following treatment with carbamylcholine, nicotine, or d-TC occurred with half-times of 1-3 days whether cells were maintained in situ or harvested and replated after removal of ligand. By contrast, 50% recovery of functional nAChRs on PC12 cells occurred within 2-6 h after drug removal. In either case the time course for recovery from nAChR functional inactivation is much slower than recovery from nAChR "functional desensitization," which is a reversible process that occurs on shorter-term (0-5-min) agonist exposure of cells. These results indicate that ganglia-type and muscle-type nAChRs are similar in their sensitivities to functional inactivation by nicotinic ligands but differ in their rates of recovery from and onset of those effects. The ability of drugs such as the agonists d-TC, decamethonium, and mecamylamine to induce functional inactivation may relate to their activities as partial/full agonists, channel blockers, and/or allosteric regulators. Effects of drugs such as pancuronium and alcuronium are likely to reflect simple competitive inhibition of primary ligand binding at functional activation sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
We have earlier reported that Aβ were significantly reduced in brains of smoking Alzheimer patients and control subjects compared with non-smokers, as well as in nicotine treated APPsw transgenic mice. To examine the mechanisms by which nicotine modulates APP processing we here measured levels of secreted amyloid precursor protein (sAPPα), total sAPP, Aβ40 and Aβ42 in different cell lines expressing different nicotinic receptor (nAChR) subtypes or no nAChRs. Treatment with nicotine increased release of sAPPα and at the same time lowered Aβ levels in both SH-SY5Y and SH-SY5Y/APPsw cells expressing α3 and α7 nAChR subtypes. These effects could also be evoked by co-treatment with the competitive α7 nAChR antagonists α-bungarotoxin and methyllycaconitine (MLA), and by these antagonists alone, suggesting that binding to the agonist binding site, rather than activation of the receptor, may be sufficient to trigger changes in APP processing. The nicotine-induced increase in sAPPα could only be blocked by co-treatment with the open channel blocker mecamylamine. In addition to nicotine, the agonists epibatidine and cytisine both significantly increased the release of sAPP in M10 cells expressing the α4/β2 nAChR subtype, and this effect was blocked by co-treatment with mecamylamine but not by the α4/β2 competitive antagonist dihydro-β-erythroidine. The lack of effect of nicotine on sAPPα and Aβ levels in HEK 293/APPsw cells, which do not express any nAChRs, demonstrates that the nicotine-induced attenuation of β-amyloidosis is mediated by nAChRs and not by a direct effect of nicotine. Our data show that nicotinic compounds stimulate the non-amyloidogenic pathway and that α4 and α7 nAChRs play a major role in modulating this process. Nicotinic drugs directed towards specific nAChR subtypes might therefore be beneficial for the treatment of AD not only by lowering Aβ production but also by enhance release of neuroprotective sAPPα.  相似文献   

16.
Recent evidence suggests that in addition to alpha4beta2 and alpha3-containing nicotinic receptors, alpha6-containing receptors are present in midbrain dopaminergic neurons and involved in the nicotine reward pathway. Using heterologous expression, we found that alpha6beta2, like alpha3beta2 and alpha4beta2 receptors, formed high affinity epibatidine binding complexes that are pentameric, trafficked to the cell surface, and produced acetylcholine-evoked currents. Chronic nicotine exposure up-regulated alpha6beta2 receptors with differences in up-regulation time course and concentration dependence compared with alpha4beta2 receptors, the predominant high affinity nicotine binding site in brain. The alpha6beta2 receptor up-regulation required higher nicotine concentrations than for alpha4beta2 but lower than for alpha3beta2 receptors. The alpha6beta2 up-regulation occurred 10-fold faster than for alpha4beta2 and slightly faster than for alpha3beta2. Our data suggest that nicotinic receptor up-regulation is subtype-specific such that alpha6-containing receptors up-regulate in response to transient, high nicotine exposures, whereas sustained, low nicotine exposures up-regulate alpha4beta2 receptors.  相似文献   

17.
Liquid chromatography columns containing stationary phases based upon immobilized nicotinic acetylcholine receptors (nAChRs) were used to screen a series of conformationally constrained nicotine and anabasine derivatives for agonist activity. The alpha3beta4 nAChR and alpha4beta2 nAChR subtypes were used to prepare the chromatographic columns and [(3)H] epibatidine dihydrochloride ([(3)H] EB) was used as the marker ligand. Single displacement experiments were conducted with the test ligands and with nicotine and carbachol. Nicotine was used as an internal control for compounds with agonist activity and carbachol was used as an internal control for compounds with very weak agonistic activity (K(d) > 4700 nM for alpha3beta4). The displacement of [(3)H] EB by each of the test compounds and internal controls was calculated and expressed as Deltaml. Functional studies were then conducted using a stably transfected cell line that expresses the alpha3beta4 nAChR and EC(50) values were determined for the test compounds and the internal controls. A comparison of the Deltaml and EC(50) values indicated that 9/11 compounds had been correctly identified as agonists or non-agonists of the alpha3beta4 nAChR. A similar comparison could not be made for the alpha4beta2 nAChR, since the intact cell line was not available for testing. The results of the study suggest that the immobilized nAChR columns can be used for the rapid on-line screening of compounds for their relative affinities for the immobilized receptor and as an initial determination of qualitative functional activities.  相似文献   

18.
The primary target for nicotine in the brain is the neuronal nicotinic acetylcholine receptor (nAChR). It has been well documented that nAChRs respond to chronic nicotine exposure by up-regulation of receptor numbers, which may underlie some aspects of nicotine addiction. In order to investigate the mechanism of nicotine-induced nAChR up-regulation, we have developed a cell culture system to assess membrane trafficking and nicotine-induced up-regulation of surface-expressed alpha(4)beta(2) nAChRs. Previous reports have implicated stabilization of the nAChRs at the plasma membrane as the potential mechanism of up-regulation. We have found that whereas nicotine exposure results in up-regulation of surface receptors in our system, it does not alter surface receptor internalization from the plasma membrane, postendocytic trafficking, or lysosomal degradation. Instead, we find that transport of nAChRs through the secretory pathway to the plasma membrane is required for nicotine-induced up-regulation of surface receptors. Therefore, nicotine appears to regulate surface receptor levels at a step prior to initial insertion in the plasma membrane rather than by altering their endocytic trafficking or degradation rates as had been previously suggested.  相似文献   

19.
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.  相似文献   

20.
Nicotine, a major component of cigarette smoking, is the important risk factor for the development of periodontal disease. However, the mechanisms that underlie the cytotoxicity of nicotine in human periodontal ligament stem cells (PDLSCs) are largely unknown. Thus, the purpose of this study was to determine the cytotoxic effect of nicotine by means of nicotinic acetylcholine receptor (nAChR) activation in PDLSCs. We first detected α7 and β4 nAChRs in PDLSCs. The gene expressions of α7 and β4 nAChR were increased by nicotine administration. Nicotine significantly decreased cell viability at a concentration higher than 10−5 M. DNA fragmentation was also detected at high doses of nicotine treatment. Moreover, the detection of sub G1 phase and TUNEL assay demonstrated that nicotine significantly induced apoptotic cell death at 10−2 M concentration. Western blot analysis confirmed that p53 proteins were phosphorylated by nicotine. Under various doses of nicotine, a decrease in the anti-apoptotic protein Bcl-2, but an increase in p53 and cleaved caspase-3 protein levels, was detected in a dose-dependent manner. However, the apoptotic effect of nicotine was inhibited by the pretreatment of α-bungarotoxin, a selective α7 nAChR antagonist or mecamylamine, a non-selective nAChR antagonist. Finally, increases in the subG1 phase and DNA fragmentation by nicotine was attenuated by each nAChR antagonist. Collectively, the presence of α7 and β4 nAChRs in PDLSCs supports a key role of nAChRs in the modulation of nicotine-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号