首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of components of the extracellular cellulase system of the thermophilic fungus Sporotrichum thermophile showed appreciable differences between strains; β-glucosidase (EC 3.2.1.21) was the most variable component. Although its endoglucanase (EC 3.2.1.4) and exoglucanase (EC 3.2.1.91) activities were markedly lower, S. thermophile degraded cellulose faster than Trichoderma reesei. The production of β-glucosidase lagged behind that of endoglucanase and exoglucanase. The latter activities were produced during active growth. When growth was inhibited by cycloheximide treatment, the hydrolysis of cellulose was lower than in the control in spite of the presence of both endoglucanase and exoglucanase activities in the culture medium. Degradation of cellulose was a growth-associated process, with cellulase preparations hydrolyzing cellulose only to a limited extent. The growth rate and cell density of S. thermophile were similar in media containing cellulose or glucose. A distinctive feature of fungal development in media incorporating cellulose or lactose (inducers of cellulase activity) was the rapid differentiation of reproductive units and autolysis of hyphal cells to liberate propagules which were capable of renewing growth immediately.  相似文献   

2.
The proteinaceous ethylene biosynthesis-inducing factor (EIF) that was purified from Cellulysin was also shown to contain a xylanase activity. In all nondenaturing protein separation methods employed (Sephacryl S-200 chromatography, and preparative isoelectric focusing and agarose electrophoresis), xylanase activity copurified with the ethylene biosynthesis-inducing activity. Treatment with heat (60°C) or proteases in 8 molar urea inhibited both ethylene-inducing and xylanase activities. Antibodies raised against purified EIF, which contains three polypeptides of 18, 14, and 10 kilodaltons, immunoprecipitated both ethylene biosynthesis-inducing and xylanase activities. The purified EIF contained no detectable cellulase, polygalacturonase, or protease activity. Other hydrolytic activities as estimated by using p-nitrophenyl derivatives of several sugars as substrates also were not detected. Different commercially available hydrolytic enzyme preparations were tested for both ethylene biosynthesis-inducing and xylanase activities. All enzymes tested contained xylanase activity, but only a few induced ethylene biosynthesis. Western blots of proteins separated by SDS-PAGE, using antibodies prepared against the non-denatured purified EIF, revealed two major bands of about 18 and 14 kilodaltons in EIF. These antibodies seem to be specific for these proteins from Trichoderma viride, because there was little cross-reactivity with the other proteins in Cellulysin and other commercial enzyme preparations. Based on these data, we suggest that EIF contains a specific xylanase activity which is involved in inducing ethylene biosynthesis.  相似文献   

3.
The thermophilic actinomycete Thermomonospora fusca produced endoxylanase, α-arabinofuranosidase, β-xylosidase, and acetyl esterase activities maximally during growth on xylan. Growth yields on glucose, xylose, or arabinose were comparable, but production of endoxylanase and β-xylosidase was not induced on these substrates. The crude xylanase activity was thermostable and relatively resistant to end product inhibition by xylobiose and xylan hydrolysis products. Six proteins with xylanase activity were identified by zymogram analysis of isoelectric focusing gels, but only a 32-kDa protein exhibiting three isomeric forms could be purified by fast protein liquid chromatography. Endoglucanases were also identified in carboxymethylcellulose-grown cultures, and their distinction from endoxylanases was confirmed. α-Arabinofuranosidase activity was due to a single dimeric protein of 92 kDa, which was particularly resistant to end product inhibition by arabinose. Three bands of acetyl esterase activity were detected by zymogram analysis, and there was evidence that these mainly consisted of an intracellular 80-kDa protein secreted to yield active 40-kDa subunits in the culture supernatant. The acetyl esterases were found to be responsible for acetyl xylan esterase activity in T. fusca, in contrast to the distinction proposed in some other systems. The addition of purified βxylosidase to endoxylanase increased the hydrolysis of xylan, probably by relieving end product inhibition. The enhanced saccharification of wheat straw caused by the addition of purified α-arabinofuranosidase to T. fusca endoxylanase suggested a truly synergistic relationship, in agreement with proposals that arabinose side groups on the xylan chain participate in cross-linking within the plant cell wall structure.  相似文献   

4.
Low exoglucanase and endoglucanase activities of marine Aspergillus niger cellulase decreased the hydrolyzing ability of cellulase. To increase the activity of halostable cellulase obtained from a marine A. niger, a cellulase with endoglucanase and exoglucanase activity was efficiently expressed by constructing a vector with promoter glaA. Exoglucanase and endoglucanase activities increased from 0.21 and 4.51 U/ml of the original strain to 0.89 U/ml and 15.12 U/ml of the transformant, respectively. Filter paper activity (FPA) increased by 7.1 folds from 0.63 to 4.47 U/ml. The release of glucose by hydrolysis of wheat straw with cellulase from the transformant was 1.37 folds higher than that with cellulase from the original strain under high salinity condition. Cellulase with endoglucanase and exoglucanase activities could be well expressed in marine A. niger. The cellulase from the transformant not only showed higher activity, but also retained halostability. An appreciate proportion of β-glucosidase, exoglucanase, endgolucanasein cellulase was important for hydrolyzing cellulose.  相似文献   

5.
Two cellulolytic thermophilic bacterial strains, CS-3-2 and CS-4-4, were isolated from decayed cornstalk by the addition of growth-supporting factors to the medium. According to 16S rRNA gene-sequencing results, these strains belonged to the genus Clostridium and showed 98.87% and 98.86% identity with Clostridium stercorarium subsp. leptospartum ATCC 35414T and Clostridium cellulosi AS 1.1777T, respectively. The endoglucanase and exoglucanase activities of strain CS-4-4 were approximately 3 to 5 times those of strain CS-3-2, whereas the β-glucosidase activity of strain CS-3-2 was 18 times higher than that of strain CS-4-4. The xylanase activity of strain CS-3-2 was 9 times that of strain CS-4-4, whereas the β-xylosidase activity of strain CS-4-4 was 27 times that of strain CS-3-2. The enzyme activities in spent cultures following cocultivation of the two strains with cornstalk as the substrate were much greater than those in pure cultures or an artificial mixture of samples, indicating synergism of glycoside hydrolase secretomes between the two strains. Quantitative measurement of the two strains in the cocultivation system indicated that strain CS-3-2 grew robustly during the initial stages, whereas strain CS-4-4 dominated the system in the late-exponential phase. Liquid chromatography-tandem mass spectrometry analysis of protein bands appearing in the native zymograms showed that ORF3880 and ORF3883 from strain CS-4-4 played key roles in the lignocellulose degradation process. Both these open reading frames (ORFs) exhibited endoglucanase and xylanase activities, but ORF3880 showed tighter adhesion to insoluble substrates at 4, 25, and 60°C owing to its five carbohydrate-binding modules (CBMs).  相似文献   

6.
A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, β-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, β-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exponential growth phase to the late stationary growth phase. Scanning electron microscopic analysis revealed the adhesion of cells to xylan. The crude enzyme preparation was found to be capable of binding to insoluble xylan and Avicel. The xylanolytic-cellulolytic enzyme system efficiently hydrolyzed insoluble xylan, Avicel, and corn hulls to soluble sugars that were exclusively xylose and glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of a crude enzyme preparation exhibited at least 17 proteins, and zymograms revealed multiple xylanases and cellulases containing 12 xylanases and 9 CMCases. The cellulose-binding proteins, which are mainly in a multienzyme complex, were isolated from the crude enzyme preparation by affinity purification on cellulose. This showed nine proteins by SDS-PAGE and eight xylanases and six CMCases on zymograms. Sephacryl S-300 gel filtration showed that the cellulose-binding proteins consisted of two multienzyme complexes with molecular masses of 1,450 and 400 kDa. The results indicated that the xylanolytic-cellulolytic enzyme system of this bacterium exists as multienzyme complexes.  相似文献   

7.
Twelve species of Streptomyces that formerly belonged to the genus Chainia were screened for the production of xylanase and cellulase. One species, Streptomyces roseiscleroticus (Chainia rosea) NRRL B-11019, produced up to 16.2 IU of xylanase per ml in 48 h. A xylanase from S. roseiscleroticus was purified and characterized. The enzyme was a debranching β-(1-4)-endoxylanase showing high activity on xylan but essentially no activity against acid-swollen (Walseth) cellulose. It had a very low apparent molecular weight of 5,500 by native gel filtration, but its denatured molecular weight was 22,600 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had an isoelectric point of 9.5. The pH and temperature optima for hydrolysis of arabinoxylan were 6.5 to 7.0 and 60°C, respectively, and more than 75% of the optimum enzyme activity was retained at pH 8.0. The xylanase had a Km of 7.9 mg/ml and an apparent Vmax of 305 μmol · min-1 · mg of protein-1. The hydrolysis rate was linear for xylan concentrations of less than 4 mg/ml, but significant inhibition was observed at xylan concentrations of more than 10 mg/ml. The predominant products of arabinoxylan hydrolysis included arabinose, xylobiose, and xylotriose.  相似文献   

8.
Direct utilization of untreated oil palm trunk (OPT) for cellulases and xylanase production by Aspergillus fumigatus SK1 was conducted under solid-state fermentation (SSF). The highest activities of extracellular cellulases and xylanases were produced at 80% moisture level, initial pH 5.0, 1 × 108 spore/g (inoculum) with 125 μm of OPT as sole carbon source. The cellulases and xylanase activities obtained were 54.27, 3.36, 4.54 and 418.70 U/g substrates for endoglucanase (CMCase), exoglucanase (FPase), β-glucosidase and xylanase respectively. The crude cellulases and xylanase required acidic condition to retain their optimum activities (pH 4.0). Crude cellulases and xylanase were more stable at 40 °C compared to their optimum activities conditions (60 °C for FPase and 70 °C for CMCase, β-glucosidase and xylanase). SDS-PAGE and zymogram analysis showed that Aspergillus fumigatus SK1 could secrete cellulases (endoglucanase, exoglucanase and β-glucosidase), xylanase and protease. Enzymatic degradation of alkaline treated OPT with concentrated crude cellulases and xylanases resulted in producing polyoses.  相似文献   

9.
The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Isoenzymes were analyzed by polyacrylamide gel electrophoresis and activity staining on the gels. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward α-naphthyl acetate and α-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed.  相似文献   

10.
Lotan T  Fluhr R 《Plant physiology》1990,93(2):811-817
Antisera to acidic isoforms of pathogenesis-related proteins were used to measure the induction of these proteins in tobacco (Nicotiana tabacum) leaves. Endo-(1-4)-β-xylanase purified from culture filtrates of Trichoderma viride was a strong elicitor of pathogenesis-related protein synthesis in tobacco leaves. The synthesis of these proteins was localized to tissue at the area of enzyme application. The inhibitors of ethylene biosynthesis and ethylene action, 1-aminoethoxyvinylglycine and silver thiosulfate, inhibited accumulation of pathogenesis-related proteins induced by tobacco mosaic virus and α-aminobutyric acid, but did not inhibit elicitation by xylanase. Likewise, the induction of these proteins by the tobacco pathogen Pseudomonas syringae pv. tabaci was not affected by the inhibitors of ethylene biosynthesis and action. The leaf response to tobacco mosaic virus and α-aminobutyric acid was dependent on light in normal and photosynthetically incompetent leaves. In contrast, the response of leaves to xylanase was independent of light. Tobacco mosaic virus and α-aminobutyric acid induced concerted accumulation of pathogenesis-related proteins. However, xylanase elicited the accumulation of only a subset of these proteins. Specifically, the plant (1-3)-β-glucanases, which are normally a part of the concerted response, were underrepresented. These experiments have revealed the presence of a novel ethylene-independent pathway for pathogenesis-related protein induction that is activated by xylanase.  相似文献   

11.
Extracellular pullulanases were purified from cell-free culture supernatants of the marine thermophilic archaea Thermococcus litoralis (optimal growth temperature, 90°C) and Pyrococcus furiosus (optimal growth temperature, 98°C). The molecular mass of the T. litoralis enzyme was estimated at 119,000 Da by electrophoresis, while the P. furiosus enzyme exhibited a molecular mass of 110,000 Da under the same conditions. Both enzymes tested positive for bound sugar by the periodic acid-Schiff technique and are therefore glycoproteins. The thermoactivity and thermostability of both enzymes were enhanced in the presence of 5 mM Ca2+, and under these conditions, enzyme activity could be measured at temperatures of up to 130 to 140°C. The addition of Ca2+ also affected substrate binding, as evidenced by a decrease in Km for both enzymes when assayed in the presence of this metal. Each of these enzymes was able to hydrolyze, in addition to the α-1,6 linkages in pullulan, α-1,4 linkages in amylose and soluble starch. Neither enzyme possessed activity against maltohexaose or other smaller α-1,4-linked oligosaccharides. The enzymes from T. litoralis and P. furiosus appear to represent highly thermostable amylopullulanases, versions of which have been isolated from less-thermophilic organisms. The identification of these enzymes further defines the saccharide-metabolizing systems possessed by these two organisms.  相似文献   

12.
Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, β-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, β-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N?=?14) were analyzed by Pearson’s correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and β-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. nigerT. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.  相似文献   

13.
The crude extracellular cellulase of Clostridium thermocellum LQRI (virgin strain) was very active and solubilized microcrystalline cellulose at one-half the rate observed for the extracellular cellulase of Trichoderma reesei QM9414 (mutant strain). C. thermocellum cellulase activity differed considerably from that of T. reesei as follows: higher endoglucanase/exoglucanase activity ratio; absence of extracellular cellobiase or β-xylosidase activity; long-chain oligosaccharides instead of short-chain oligosaccharides as initial (15-min) hydrolytic products on microcrystalline cellulose; mainly cellobiose or xylobiose as long-term (24-h) hydrolysis products of Avicel and MN300 or xylan; and high activity and stability at 60 to 70°C. Under optimized reaction conditions, the kinetic properties (Vmax, 0.4 μmol/min per mg of protein; energy of activation, 33 kJ; temperature coefficient, 1.8) of C. thermocellum cellulose-solubilizing activity were comparable to those reported for T. reesei, except that the dyed Avicel concentration at half-maximal velocity was twofold higher (182 μM). The cellulose-solubilizing activity of the two crude cellulases differed considerably in response to various enzyme inhibitors. Most notably, Ag2+ and Hg2+ effectively inhibited C. thermocellum but not T. reesei cellulase at <20 μM, whereas Ca2+, Mg2+, and Mn2+ inhibited T. reesei but not C. thermocellum cellulase at >10 mM. Both enzymes were inhibited by Cu2+ (>20 mM), Zn2+ (>1.0 mM), and ethylene glycol-bis(β-aminoethyl ether)- N,N-tetraacetic acid (>10 mM). T. reesei but not C. thermocellum cellulose-solubilizing activity was 20% inhibited by glucose (73 mM) and cellobiose (29 mM). Both cellulases preferentially cleaved the internal glycosidic bonds of cellooligosaccharides. The overall rates of cellooligosaccharide degradation were higher for T. reesei than for C. thermocellum cellulase, except that the rates of conversion of cellohexaose to cellotriose were equivalent.  相似文献   

14.
Cellulolytic myxobacterium Sorangium can efficiently degrade cellulose materials. The cellulolytic activities are linked to cellular surfaces and organized into a large complex, which is presumed to be the protuberant structures that were found on the growing cell surfaces. The separated cellulolytic complex was determined to be 1000–2000 kDa from gel chromatogram, and contained at least cellulase and xylanase activities. The separated complex was unstable and could release smaller fractions when they stored in solution at refrigerator. There were more than ten bands on SDS-PAGE after the complex was heat-treated with SDS. The HPLC chromatogram of the complex on DIOL-300 column also supports the result.  相似文献   

15.
Among 180 Streptomyces strains tested, 25 were capable of hydrolyzing microcrystalline cellulose (Avicel) at 30°C. Streptomyces reticuli was selected for further studies because of its ability to grow at between 30 and 50°C on Avicel. Enzymatic activities degrading Avicel, carboxymethyl cellulose, and cellobiose were found both in the culture supernatant and in association with the mycelium and crystalline substrate. The bound enzymes were efficiently solubilized by repeated washes with buffer of low ionic strength (50 mM Tris hydrochloride [pH 7.5]) and further purified by fast protein liquid chromatography. A high-molecular-weight Avicelase of >300 kilodaltons could be separated from carboxymethyl cellulase (CMCase) and β-glucosidase activities (molecular mass, 40 to 50 kilodaltons) by gel filtration on Superose 12. The CMCase fraction was resolved by Mono Q anion-exchange chromatography into two enzymes designated CMCase 1 and CMCase 2. The β-glucosidase activity was found to copurify with CMCase 2. The purified cellulase components showed optimal activity at around pH 7.0 and temperatures of between 45 and 50°C. Avicelase (but not CMCase) activity was stimulated significantly by the addition of CaCl2.  相似文献   

16.
Cytosol from channel catfish liver and intestinal mucosa has high sulfotransferase activity with low concentrations of 3-, 7-, or 9-hydroxybenzo[a]pyrene. To further investigate this conjugation pathway, sulfotransferase activity toward 9-hydroxybenzo[a]pyrene was isolated from catfish intestinal and hepatic cytosol by chromatography on anion exchange and PAP-agarose affinity columns. SDS-PAGE of the active fractions showed that one major band with molecular size of about 41,000 Da was isolated from intestine, while two bands of about 41,000 and 31,000 Da were obtained from liver. Antibodies against human phenol-sulfating sulfotransferase cross-reacted strongly with the 41,000-Da bands from liver and intestine, but weakly with the hepatic 31,000-Da protein. N-Terminal sequence information could not be obtained from the pure proteins. Following digestion, an internal sequence of 20 amino acid residues was obtained from the hepatic 41,000-Da protein, which matched a sequence found in several mammalian sulfotransferases. No fish sulfotransferase sequences were available for comparison. The identity of the hepatic 31,000-Da protein was not established. The purified 41,000-Da proteins had very high activities with 3-, 7-, or 9-hydroxybenzo[a]pyrene, with K(m) values in the 40-100 nM range and V(max) 125-300 nmol/min/mg of protein. Substrate inhibition was observed when the concentrations of hydroxylated benzo[a]pyrenes were above 0.5 microM. As well as benzo[a]pyrene phenols, the purified 41,000-Da sulfotransferases catalyzed sulfation of 2-naphthol, 4-nitrophenol, 4-methylumbelliferone, 7-(hydroxymethyl)-12-methylbenz[a]anthracene, dehydroepiandrosterone, estrone, and 17beta-estradiol. Phenolic compounds were the preferred substrates for the purified enzymes.  相似文献   

17.
The tonoplast ATPase from etiolated seedlings of Vigna radiata L. (mung bean) was isolated using a two-step detergent solubilization modified from Mandala and Taiz (S Mandala, L Taiz [1985] Plant Physiol 78: 327-333). After ultracentrifugation on 10 to 28% sucrose gradient, the ATPase showed a 31.6-fold purification over the initial specific activity of the starting tonoplast-enriched membranes. The purified ATPase used Mg2+-ATP as the preferred substrate. The tonoplast ATPase was isolated in a form with characteristics similar to that on its native membrane environment. Analysis by SDS-PAGE revealed two prominent bands with molecular weights of 78,000 (α subunit) and 64,000 (β subunit). The intensity of Coomassie blue staining showed a 1:1 stoichiometry for α and β subunits. The amino acid composition of α and β subunits also confirmed the suggested stoichiometry of the subunit composition of the tonoplast ATPase. Moreover, radiation inactivation analysis yielded a functional size of 414 ± 24 and 405 ± 25 kilodaltons for soluble and membrane bound tonoplast ATPases, respectively. It is possible that the functioning tonoplast ATPase may be in a form of αβ-heteromultimer.  相似文献   

18.
The wide variety of bacteria in the environment permits screening for more efficient cellulases to help overcome current challenges in biofuel production. This study focuses on the isolation of efficient cellulase producing bacteria found in organic fertilizers and paper mill sludges which can be considered for use in large scale biorefining. Pure isolate cultures were screened for cellulase activity. Six isolates: S1, S2, S3, S4, E2, and E4, produced halos greater in diameter than the positive control (Cellulomonas xylanilytica), suggesting high cellulase activities. A portion of the 16S rDNA genes of cellulase positive isolates were amplified and sequenced, then BLASTed to determine likely genera. Phylogenetic analysis revealed genera belonging to two major Phyla of Gram positive bacteria: Firmicutes and Actinobacteria. All isolates were tested for the visible degradation of filter paper; only isolates E2 and E4 (Paenibacillus species) were observed to completely break down filter paper within 72 and 96 h incubation, respectively, under limited oxygen condition. Thus E2 and E4 were selected for the FP assay for quantification of total cellulase activities. It was shown that 1% (w/v) CMC could induce total cellulase activities of 1652.2±61.5 and 1456.5±30.7 μM of glucose equivalents for E2 and E4, respectively. CMC could induce cellulase activities 8 and 5.6X greater than FP, therefore CMC represented a good inducing substrate for cellulase production. The genus Paenibacillus are known to contain some excellent cellulase producing strains, E2 and E4 displayed superior cellulase activities and represent excellent candidates for further cellulase analysis and characterization.  相似文献   

19.
Sclerotium rolfsii UV-8 mutant secretes high levels of cellobiase and xylanase in addition to having high cellulase production. The apparent Km and Vmax of cellobiase (grown in NM-2 + 2% corn steep liquor medium) with cellobiose as a substrate were 5.6 mM and 22.2 μmol of glucose liberated per min per ml of culture filtrate, respectively. The addition of 2% corn steep liquor to NM-2 medium increased endo-β-glucanase, cellobiase, and xylanase yields by approximately 1.5-fold.  相似文献   

20.
Xylan-degrading enzymes were induced when Phanerochaete chrysosporium was grown at 30°C in shake flask media containing xylan, Avicel PH 102, or ground corn stalks. The highest xylanase activity was produced in the corn stalk medium, while the xylan-based fermentation resulted in the lowest induction. Analytical and preparative isoelectric focusing were used to characterize xylanase multienzyme components. Preparative focusing was performed only with the cultures grown on Avicel and corn stalk. Of over 30 protein bands separated by analytical focusing from the Avicel and corn stalk media, three main groups (I, II, and III) of about five isoenzymes each showed xylanase activity when a zymogram technique with a xylan overlay was used. Enzyme assays revealed the presence of 1,4-β-endoxylanase and arabinofuranosidase activities in all three isoenzyme groups separated by preparative isoelectric focusing. β-Xylosidase activity appeared in the first peak and also as an independent peak between peaks II and III. Denatured molecular masses for the three isoenzyme groups were found to be between 18 and 90 kDa, and pI values were in the range of 4.2 to 6.0. β-Xylosidase has an apparent molecular mass of 20, 30, and 90 kDa (peak I) and 18 and 45 kDa (independent peak), indicating a trimer and dimer structure, respectively, with pI values of 4.2 and 5.78, respectively. Three more minor xylanase groups were produced on corn stalk medium: a double peak in the acidic range (pI 6.25 to 6.65 and 6.65 to 7.12) and two minor peaks in the alkaline range (pI 8.09 to 8.29 and 9.28 to 9.48, respectively). The profile of xylanases separated by isoelectric focusing (zymogram) of culture filtrate from cells grown on corn stalk media was more complex than that of culture supernatants from cells grown on cellulose. The pH optima of the three major xylanase groups are in the range of pH 4 to 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号