首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Response of floodplain grassland plant communities to altered water regimes   总被引:1,自引:1,他引:1  
Floodplain grasslands are often composed of a mosaic of plant communities controlled by hydrological regime. This article examines the sensitivity of floodplain grassland plant communities to water regime using reciprocal transplantation of an inundation grassland and a flood-meadow within an English floodplain. Experimental treatments comprised control, transplanted and lifted plots; the last treatment, in order to elucidate any disturbance effects of transplantation. Plant community response was analysed using species abundance and their ecological traits. Results from both communities showed substantial annual variations related to hydrology, including significant species changes, but generally, vegetation seemed to be responding to drier conditions following a major flood event. This ‘drying’ trend was characterised by increased species diversity, a greater abundance of competitive species and fewer typical wetland plants. Transplanted community composition increasingly resembled receptor sites and transplant effects were most pronounced the first year after treatment for both vegetation types. Differential responses to water regime were detected for the two plant communities. The inundation grassland community was particularly dynamic with a composition that rapidly reflected drying conditions following the major flood, but transplantation into a drier flood-meadow site prompted little additional change. The flood-meadow community appeared more resistant to post-inundation drying, but was sensitive to increased wetness caused by transplantation into inundation grassland, which significantly reduced six species while none were significantly favoured. The effects of disturbance caused by lifting the transplants were limited in both communities, although five species showed significant annual fluctuations. The study shows that small alterations in water regime can prompt rapid vegetation changes and significant plant species responses in floodplain grasslands, with effects probably magnified through competitive interactions. The dynamic properties of floodplain vegetation demonstrated by this study suggest that its classification, management and monitoring are challenging and ideally should be based on long-term studies.  相似文献   

2.

Understanding the effects of forest-to-agriculture conversion on microbial diversity has been a major goal in soil ecological studies. However, linking community assembly to the ruling ecological processes at local and regional scales remains challenging. Here, we evaluated bacterial community assembly patterns and the ecological processes governing niche specialization in a gradient of geography, seasonality, and land-use change, totaling 324 soil samples, 43 habitat characteristics (abiotic factors), and 16 metabolic and co-occurrence patterns (biotic factors), in the Brazilian Atlantic Rainforest, a subtropical biome recognized as one the world’s largest and most threatened hotspots of biodiversity. Pairwise beta diversities were lower in pastures than in forest and no-till soils. Pasture communities showed a predominantly neutral model, regarding stochastic processes, with moderate dispersion, leading to biotic homogenization. Most no-till and forest microbial communities followed a niche-based model, with low rates of dispersal and weak homogenizing selection, indicating niche specialization or variable selection. Historical and evolutionary contingencies, as represented by soil type, season, and dispersal limitation were the main drivers of microbial assembly and processes at the local scale, markedly correlated with the occurrence of endemic microbes. Our results indicate that the patterns of assembly and their governing processes are dependent on the niche occupancy of the taxa evaluated (generalists or specialists). They are also more correlated with historical and evolutionary contingencies and the interactions among taxa (i.e., co-occurrence patterns) than the land-use change itself.

  相似文献   

3.
Native grasslands are among the most imperiled of the North American ecosystems, with only ∼4% of their pre-settlement area remaining, but some grassland habitats are being restored and maintained through such methods as prescribed burning and mowing, which may provide habitat for animal species endemic to this ecosystem. I determined how succession of the plant community, due to a four-year rotational burn in 16 grassland fragments, influenced species richness and local abundances of small mammals in Illinois, USA. Species richness was relatively low in grasslands that were recently burned and highest in older successional grasslands. The most abundant species, Microtus ochrogaster, M. pennslyvanicus, Peromyscus maniculatus, P. leucopus, and Reithrodontomys megalotis showed very different responses to succession; Microtus spp. were most abundant in older successional grasslands, preferring areas with more cover of bunchgrasses, whereas the other three species were relatively abundant in grasslands of all successional ages. P. maniculatus was most abundant in any habitat that had ample open ground. The grasslands at my study site are a mixture of restored and non-restored grasslands. Overall, adding additional time between burns and restoring more of the grasslands by planting bunchgrasses that are native to this area may increase abundances of most mammal species at my study site.  相似文献   

4.
Many grassland ecosystems are disturbance-dependent, having evolved under the pressures of fire and grazing. Restoring these disturbances can be controversial, particularly when valued resources are thought to be disturbance-sensitive. We tested the effects of fire and grazing on butterfly species richness and population density in an economically productive grassland landscape of the central U.S. Three management treatments were applied: (1) patch-burn graze—rotational burning of three spatially distinct patches within a pasture, and moderately-stocked cattle grazing (N?=?5); (2) graze-and-burn—burning entire pasture every 3?years, and moderately-stocked cattle grazing (N?=?4); and (3) burn-only—burning entire pasture every 3?years, but no cattle grazing (N?=?4). Butterfly abundance was sampled using line transect distance sampling in 2008 and 2009, with six 100-m transects per pasture. Butterfly species richness did not respond to management treatment, but was positively associated with pre-treatment proportion of native plant cover. Population density of two prairie specialists (Cercyonis pegala and Speyeria idalia) and one habitat generalist (Danaus plexippus) was highest in the burn-only treatment, whereas density of one habitat generalist (Cupido comyntas) was highest in the patch-burn graze treatment. Treatment application affected habitat structural characteristics including vegetation height and cover of bare ground. Historic land uses have reduced native plant cover and permitted exotic plant invasion; for some butterfly species, these legacies had a greater influence than management treatments on butterfly density. Conservation of native insect communities in altered grasslands might require native plant restoration in addition to restoration of disturbance processes.  相似文献   

5.
Land-use intensification leads to species loss and shifts in community composition, but only few studies examine how these dynamics affect ecological and life-history traits. We thus investigated whether ecological and life-history traits differ between butterfly communities of grasslands with different land-use intensity. We conducted butterfly transect surveys in 137 grassland sites in three regions of Germany and compiled 10 species-specific ecological and life-history traits from the literature. These traits are associated with food plant specialisation, dispersal, distribution, reproduction and development. We calculated a land-use intensity gradient based on the amount of fertilise mowing frequency and grazing intensity. We analysed differences of traits characteristics between butterfly communities along the land-use intensity gradient in a fourth-corner analysis, thus considering correlations between traits. Six ecological and life-history traits changed from characteristics associated with specialists to such associated with generalists with increasing land-use intensity. These traits characteristics in intensified grasslands were: high dispersal propensity, large distribution range, low population density, more than one generation per year, hibernation in a more advanced developmental stage and a long flight period. The functional homogenisation of the butterfly communities with changes from specialist to generalist trait characteristics with increasing land-use intensity may have severe consequences for ecosystem functioning and services.  相似文献   

6.
7.
1. Land‐use studies are challenging because of the difficulty of finding catchments that can be used as replicates and because land‐use effects may be obscured by sources of variance acting over spatial scales smaller than the catchment. To determine the extent to which land‐use effects on stream ecosystems are scale dependent, we designed a whole‐catchment study of six matched pairs (pasture versus native tussock) of second‐order stream catchments, taking replicate samples from replicate bedforms (pools and riffles) in each stream. 2. Pasture streams had a smaller representation of endemic riparian plant species, particularly tussock grasses, higher bank erosion, a somewhat deeper layer of fine sediment, lower water velocities in riffles, less moss cover and higher macroinvertebrate biodiversity. At the bedform scale, suspendable inorganic sediment (SIS) was higher in pools than riffles and in pasture streams there was a negative relationship between SIS and the percentage of the bed free of overhanging vegetation. Differences between stream reaches (including any interactions between land use and stream pair) were significant for SIS, substrate depth and characteristics of riparian vegetation. There were also significant differences between replicate bedforms in the same stream reaches in percentage exotic species in overhanging vegetation, percentage moss cover, QMCI (Quantitative Macroinvertebrate Community Index – a macroinvertebrate‐based stream health index) and macroinvertebrate density. 3. Significant differences among stream reaches and among replicate bedform units within the same reach, as well as interactions between these spatial units and land‐use effects, are neither trivial nor ‘noise’ but represent real differences among spatial units that typically are unaccounted for in stream studies. Our multi‐scale study design, accompanied by an investigation of the explanatory power of different factors operating at different scales, provides an improved understanding of variability in nature.  相似文献   

8.
Changes in rainfall and temperature regimes are altering plant productivity in grasslands worldwide, and these climate change factors are likely to interact with grassland disturbances, particularly grazing. Understanding how plant production responds to both climate change and defoliation, and how this response varies among grassland types, is important for the long-term sustainability of grasslands. For 4 years, we manipulated temperature [ambient and increased using open-top chambers (OTC)], water (ambient, reduced using rainout shelters and increased using hand watering) and defoliation (clipped, and unclipped) in three grassland types along an elevation gradient. We monitored plant cover and biomass and found that OTC reduced biomass by 15 %, but clipping and water treatments interacted with each other and their effects varied in different grassland types. For example, total biomass did not decline in the higher elevation grasslands due to clipping, and water addition mitigated the effects of clipping on subordinate grasses in the lower grasslands. The response of total biomass was driven by dominant plant species while subordinate grasses and forbs showed more variable responses. Overall, our results demonstrate that biomass in the highest elevation grassland was least effected by the treatments and the response of biomass tended to be dependent on interactions between climate change treatments and defoliation. Together, the results suggest that ecosystem function of these grasslands under altered climate patterns will be dependent on site-specific management.  相似文献   

9.
Size-dependent resistance of protected areas to land-use change   总被引:1,自引:0,他引:1  
One of the major threats facing protected areas (PAs) is land-use change and habitat loss. We assessed the impact of land-use change on PAs. The majority of parks have been effective at protecting the ecosystems within their borders, even in areas with significant land-use pressures. More in particular, the capacity of PAs to slow down habitat degradation and to favour habitat restoration is clearly related to their size, with smaller areas that on average follow the dominant land-use change pattern into which they are embedded. Our results suggest that small parks are not going to be viable in the long term if they are considered as islands surrounded by a 'human-dominated ocean'. However, small PAs are, in many cases, the only option available, implying that we need to devote much more attention to the non-protected matrix in which PAs must survive.  相似文献   

10.
11.
Strey  S.  Boy  J.  Strey  R.  Weber  O.  Guggenberger  G. 《Plant and Soil》2016,398(1-2):327-337
Plant and Soil - The southeastern part of the Amazon region is one of the largest agricultural frontiers in the world, leading to extensive land-use change. This paper provides evidence for the...  相似文献   

12.
In grazed pastures, soil pH is raised in urine patches, causing dissolution of organic carbon and increased ammonium and nitrate concentrations, with potential effects on the structure and functioning of soil microbial communities. Here we examined the effects of synthetic sheep urine (SU) in a field study on dominant soil bacterial and fungal communities associated with bulk soil and plant roots (rhizoplane), using culture-independent methods and a new approach to investigate the ureolytic community. A differential response of bacteria and fungal communities to SU treatment was observed. The bacterial community showed a clear shift in composition after SU treatment, which was more pronounced in bulk soil than on the rhizoplane. The fungal community did not respond to SU treatment; instead, it was more affected by the time of sampling. Redundancy analysis of data indicated that the variation in the bacterial community was related to change in soil pH, while fungal community was more responsive to dissolution of organic carbon. Like the universal bacterial community, the ureolytic community was influenced by the SU treatment. However, different taxa within the ureolytic bacterial community responded differentially to the treatment. The ureolytic community comprised of members from a range of phylogenetically different taxa and could be used to measure the effect of environmental perturbations on the functional diversity of natural ecosystems.  相似文献   

13.
We reconstructed the Holocene developmental history of a kettle-hole peatland in the Tuchola Forest of Northern Poland, using pollen, testat amoebae and plant macrofossil indicators. Our aims were to determine the timing and pattern of autogenic succession and natural and anthropogenic influences on the peatland. Northern Poland is under mixed oceanic and continental climatic influences but has so far been less studied in a palaeoecological context than more oceanic regions of Europe. In the first terrestrial developmental phase of the mire, the testate amoebae-inferred depth to water table revealed two major dry shifts at ca. 9400 (end of lake phase) and ca. 7100 cal BP (a period of global cooling and dry shift in Western Europe). Conditions became wetter again in two steps at ca. 6700 and ca. 5800 BP after a dry event at ca. 6100 BP. The timing of the wet shift at 5800 BP corresponds to wet periods in Western Europe. Peat accumulation rates were low (0.1 mm yr− 1) between ca. 5600 and ca. 3000 BP when sedges dominated the peatland. In the last 2500 yrs surface moisture fluctuated with wet events at ca. 2750–2400, and 2000 BP, and dry events at ca. 2250–2100 and 1450 BP. After 1450 BP a trend towards wetter conditions culminated at ca. 500 cal BP, possibly caused by local deforestation. Over the mire history, pH (inferred from testate amoebae) was mostly low (around 5) with two short-lived shifts to alkaline conditions (7.5) at ca. 6100 and 1450 BP indicating a minerotrophic influence from surface run-off into the mire. Up to about 1000 BP the ecological shifts inferred from the three proxies agree with palaeoclimatic records from Poland and Western Europe. After this date, however correlation is less clear suggesting an increasing local anthropogenic impact on the mire. This study confirms that kettle-hole peatlands can yield useful palaeoenvironmental data as well as recording land-use change and calls for more comparable studies in regions are the interface between major climate influences.  相似文献   

14.
15.
Vibrio spp. predominated in the culturable bacterial community of surface waters of the Puerto Rico Trench at the site of disposal for nearly ten years of pharmaceutical wastes. In this area and surrounding waters as far as 1000 km north of the dumpsite and south into the Caribbean Sea, Vibrio spp. comprised up to 100% of the culturable bacteria, with Acinetobacter spp. being the second most prevalent group. Pseudomonas spp., reported to be common in these waters a decade earlier, were virtually absent from all samples examined during a three year study involving 9 cruises. Staphylococcus spp. were also found in water samples collected within the dumpsite. Using cultures isolated from surface water samples collected at the dumpsite, laboratory experiments confirmed that pharmaceutical waste can enrich for Vibrio spp., in preference to Pseudomonas spp., with growth of the strains proportional to the amount of waste added.  相似文献   

16.
Vibrio spp. predominated in the culturable bacterial community of surface waters of the Puerto Rico Trench at the site of disposal for nearly ten years of pharmaceutical wastes. In this area and surrounding waters as far as 1000 km north of the dumpsite and south into the Caribbean Sea, Vibrio spp. comprised up to 100% of the culturable bacteria, with Acinetobacter spp. being the second most prevalent group. Pseudomonas spp., reported to be common in these waters a decade earlier, were virtually absent from all samples examined during a three year study involving 9 cruises. Staphylococcus spp. were also found in water samples collected within the dumpsite. Using cultures isolated from surface water samples collected at the dumpsite, laboratory experiments confirmed that pharmaceutical waste can enrich for Vibrio spp., in preference to Pseudomonas spp., with growth of the strains proportional to the amount of waste added.  相似文献   

17.
The Volterra equations which represent competitions between two species are utilized to examine the phenomenon of boundary formation between two species of plants. The set of stable stationary points for these equations is determined and is illustrated in a product space of parameters and dynamical variables. The stages of boundary appearance and succession are visualized by considering slow changes of the parameters as functions of time and space.  相似文献   

18.
Changes in the atmospheric concentration of carbon dioxide ([CO2]), nutrient availability and biotic diversity are three major drivers of the ongoing global change impacting terrestrial ecosystems worldwide. While it is well established that soil nutrient heterogeneity exerts a strong influence on the development of plant individuals and communities, it is virtually unknown how nutrient heterogeneity and global change drivers interact to affect plant performance and ecosystem functioning. We conducted a microcosm experiment to evaluate the effect of simultaneous changes in [CO2], nutrient heterogeneity (NH), nutrient availability (NA) and species evenness on the biomass and nutrient uptake patterns of assemblages formed by Lolium perenne, Plantago lanceolata and Holcus lanatus. When the nutrients were heterogeneously supplied, assemblages exhibited precise root foraging patterns, and had higher above‐ and belowground biomass (average increases of 32% and 29% for above‐ and belowground biomass, respectively). Nutrient heterogeneity also modulated the effects of NA on biomass production, complementarity in nitrogen uptake and below: aboveground ratio, as well as those of [CO2] on the nutrient use efficiency at the assemblage level. Our results show that nutrient heterogeneity has the potential to influence the response of plant assemblages to simultaneous changes in [CO2], nutrient availability and biotic diversity, and suggest that it is an important environmental factor to interpret and assess plant assemblage responses to global change.  相似文献   

19.
Seed mass is one of the most important plant traits. It is strongly related to plant fitness and life-history strategy, and is one of the key determinants of the ability of plants to spread and thus to respond to changing environments. While substantial empirical work has been devoted to understanding seed-mass variation across species, we know less about seed-mass variation within species, its geographical and ecological differentiation, and the degree to which it is influenced by environmental change. Here, we studied intraspecific variability in seed mass of six common grassland plants (Arrhenatherum elatius, Bromus hordeaceus, Cerastium holosteoides, Heracleum sphondylium, Trifolium repens and Veronica chamaedrys) across three regions in Germany and a broad range of land-use types and intensities. We found substantial seed-mass variation among regions, populations, and individuals within all of the studied species. In five species, seed mass had a strong and consistent geographic component, and in three species we found significant effects of land use – fertilisation, grazing intensity or mowing frequency – on seed mass. In several species, land use and geographic region not only affected mean seed mass, but also the variability of seed mass within populations. Our study demonstrates that seed mass is geographically and ecologically differentiated in common grassland species. It is likely that both phenotypic plasticity and genetic factors contribute to this differentiation. Our results also show that seed mass is a highly variable trait with typically around 10-fold variation within species.  相似文献   

20.
Abstract Two successive shrub invasions of a short tussock grassland induced by grazing and burning were examined in montane South Island, New Zealand. The first invasion was by a native shrub, matagouri (Discaria toumatou Raoul). The second invasion was by an exotic shrub, Scotch broom (Cytisus scoparius (L.) Link), which invaded the matagouri shrubland that had developed over the grassland. The invasions were investigated using analysis of spatial patterns of both shrubs and tussocks, and age, growth rates and size structure of the shrubs. Competition between the two shrub species was examined using spatial patterns and comparing allometric relationships. After initial invasion by matagouri of the grasslands, stand density increased by consolidation about its initial colonization points. Current matagouri distribution is often negatively associated with tussocks. Scotch broom occurs most frequently in a dense sward of introduced grasses and occasionally in tussocks in interstices among matagouri shrubs. Despite the palatability of Scotch broom to sheep that graze the site, there was no evidence that the spiny matagouri facilitates invasion by protecting Scotch broom seedlings; rather there was negative association between the shrub species. The two species probably compete for above-ground space. However, diameter and height growth rates of Scotch broom far exceed those of matagouri so Scotch broom is likely to increase in biomass rapidly at the site. The autogenic organization and disturbance history of the resident plant communities have rendered each vulnerable to successive invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号