首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultures of Phanerochaete chrysosporium were examined for the presence of bacteria as previously described (F. Seigle-Murandi, P. Guiraud, C. Falsen, and K.-E. Eriksson, Appl. Environ. Microbiol. 62:2477-2481, 1996). Under no conditions could bacteria be isolated from cultures of P. chrysosporium. With PCR primers corresponding to small-subunit rRNA genes, no bacterium-like product could be amplified from cultures of the widely used P. chrysosporium strain BKM-F-1767. Thus, we could find no evidence of bacteria in association with P. chrysosporium BKM-F-1767.  相似文献   

2.
A M Cancel  A B Orth    M Tien 《Applied microbiology》1993,59(9):2909-2913
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. In this work, we investigated the roles of veratryl alcohol and lignin in the ligninolytic system of P. chrysosporium BKM-F-1767 cultures grown under nitrogen-limited conditions. Cultures supplemented with 0.4 to 2 mM veratryl alcohol showed increased lignin peroxidase activity. Addition of veratryl alcohol had no effect on Mn-dependent peroxidase activity and inhibited glyoxal oxidase activity. Azure-casein analysis of acidic proteases in the extracellular fluid showed that protease activity decreased during the early stages of secondary metabolism while lignin peroxidase activity was at its peak, suggesting that proteolysis was not involved in the regulation of lignin peroxidase activity during early secondary metabolism. In cultures supplemented with lignin or veratryl alcohol, no induction of mRNA coding for lignin peroxidase H2 or H8 was observed. Veratryl alcohol protected lignin peroxidase isozymes H2 and H8 from inactivation by H2O2. We conclude that veratryl alcohol acts as a stabilizer of lignin peroxidase activity and not as an inducer of lignin peroxidase synthesis.  相似文献   

3.
Summary Degenerate oligonucleotides encoding the two conserved histidine regions of the Phanerochaete chrysosporium BKM-F-1767 lignin peroxidase gene have been used as PCR primers to clone lignin peroxidase genes from the genomic DMA of four different white rot fungi.  相似文献   

4.
A cDNA clone (glx-2c) encoding glyoxal oxidase (GLOX) was isolated from a Phanerochaete chrysosporium lambda gt11 library, and its nucleotide sequence was shown to be distinct from that of the previously described clone glx-1c (P. J. Kersten and D. Cullen, Proc. Natl. Acad. Sci. USA 90:7411-7413, 1993). Genomic clones corresponding to both cDNAs were also isolated and sequenced. overall nucleotide sequence identity was 98%, and the predicted proteins differed by a single residue: Lys-308<==>Thr-308. Analyses of parental dikaryotic strain BKM-F-1767 and homokaryotic progeny firmly established allelism for these structural variants. Southern blots of pulsed-field gels localized the GLOX gene (glx) to a dimorphic chromosome separate from the peroxidase and cellobiohydrolase genes of P. chrysosporium. Controlled expression of active GLOX was obtained from Aspergillus nidulans transformants when glx-1c was fused to the promoter and secretion signal of the A. niger glucoamylase gene. The GLOX isozyme corresponding to glx-2c was also efficiently secreted by A. nidulans following site-specific mutagenesis of the expression vector at codon 308 of glx-1c.  相似文献   

5.
Many white rot fungi are able to produce de novo veratryl alcohol, which is known to be a cofactor involved in the degradation of lignin, lignin model compounds, and xenobiotic pollutants by lignin peroxidase (LiP). In this study, Mn nutrition was shown to strongly influence the endogenous veratryl alcohol levels in the culture fluids of N-deregulated and N-regulated white rot fungi Bjerkandera sp. strain BOS55 and Phanerochaete chrysosporium BKM-F-1767, respectively. Endogenous veratryl alcohol levels as high as 0.75 mM in Bjerkandera sp. strain BOS55 and 2.5 mM in P. chrysosporium were observed under Mn-deficient conditions. In contrast, veratryl alcohol production was dramatically decreased in cultures supplemented with 33 or 264 (mu)M Mn. The LiP titers, which were highest in Mn-deficient media, were shown to parallel the endogenous veratryl alcohol levels, indicating that these two parameters are related. When exogenous veratryl alcohol was added to Mn-sufficient media, high LiP titers were obtained. Consequently, we concluded that Mn does not regulate LiP expression directly. Instead, LiP titers are enhanced by the increased production of veratryl alcohol. The well-known role of veratryl alcohol in protecting LiP from inactivation by physiological levels of H(inf2)O(inf2) is postulated to be the major reason why LiP is apparently regulated by Mn. Provided that Mn was absent, LiP titers in Bjerkandera sp. strain BOS55 increased with enhanced fungal growth obtained by increasing the nutrient N concentration while veratryl alcohol levels were similar in both N-limited and N-sufficient conditions.  相似文献   

6.
7.
The genomic clones encoding lignin peroxidase isozyme H8 and two closely related genes were isolated from Phanerochaete chrysosporium BKM-1767, and their nucleotide sequences were determined. The positions and approximate lengths of introns were found to be highly conserved in all three clones. Analysis of homokaryotic derivatives indicated that the three clones are not alleles of the same gene(s).  相似文献   

8.
9.
In order to delineate the roles of lignin and manganese peroxidases in the degradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium, the biodegradation of phenanthrene (chosen as a model for polycyclic aromatic hydrocarbons) was investigated. The disappearance of phenanthrene from the extracellular medium and mycelia was determined by using gas chromatography. The disappearance of phenanthrene from cultures of wild-type strains BKM-F1767 (ATCC 24725) and ME446 (ATCC 34541) under ligninolytic (low-nitrogen) as well as nonligninolytic (high-nitrogen) conditions was observed. The study was extended to two homokaryotic (basidiospore-derived) isolates of strain ME446. Both homokaryotic isolates, ME446-B19 (which produces lignin and manganese peroxidases only in low-nitrogen medium) and ME446-B5 (which totally lacks lignin and manganese peroxidase activities), caused the disappearance of phenanthrene when grown in low- as well as high-nitrogen media. Moreover, lignin and manganese peroxidase activities were not detected in any of the cultures incubated in the presence of phenanthrene. Additionally, the mineralization of phenanthrene was observed even under nonligninolytic conditions. The results collectively indicate that lignin and manganese peroxidases are not essential for the degradation of phenanthrene by P. chrysosporium. The observation that phenanthrene degradation occurs under nonligninolytic conditions suggests that the potential of P. chrysosporium for degradation of certain environmental pollutants is not limited to nutrient starvation conditions.  相似文献   

10.
In order to delineate the roles of lignin and manganese peroxidases in the degradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium, the biodegradation of phenanthrene (chosen as a model for polycyclic aromatic hydrocarbons) was investigated. The disappearance of phenanthrene from the extracellular medium and mycelia was determined by using gas chromatography. The disappearance of phenanthrene from cultures of wild-type strains BKM-F1767 (ATCC 24725) and ME446 (ATCC 34541) under ligninolytic (low-nitrogen) as well as nonligninolytic (high-nitrogen) conditions was observed. The study was extended to two homokaryotic (basidiospore-derived) isolates of strain ME446. Both homokaryotic isolates, ME446-B19 (which produces lignin and manganese peroxidases only in low-nitrogen medium) and ME446-B5 (which totally lacks lignin and manganese peroxidase activities), caused the disappearance of phenanthrene when grown in low- as well as high-nitrogen media. Moreover, lignin and manganese peroxidase activities were not detected in any of the cultures incubated in the presence of phenanthrene. Additionally, the mineralization of phenanthrene was observed even under nonligninolytic conditions. The results collectively indicate that lignin and manganese peroxidases are not essential for the degradation of phenanthrene by P. chrysosporium. The observation that phenanthrene degradation occurs under nonligninolytic conditions suggests that the potential of P. chrysosporium for degradation of certain environmental pollutants is not limited to nutrient starvation conditions.  相似文献   

11.
When incubated in synthetic (N-limited) medium and on ashwood chips, Phanerochaete chrysosporium BKM-F-1767 degraded 14 and 10 mg/l diuron, respectively. The wood chips were used as support and sole nutrient source for the fungus. A higher degradation efficiency was found in ashwood culture as compared to the liquid culture, probably as a result of the synergetic effect of attached fungal growth, presence of limiting-substrate conditions and the microenvironment provided by ashwood, all favorable for production of high extracellular enzyme titres. Diuron degradation occured during the idiophasic growth, in the presence of manganese peroxidase, detected as dominant enzyme in both cultures.  相似文献   

12.
The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi.  相似文献   

13.
An inert carrier (nylon sponge), a non-inert carrier (barley straw) and the addition of veratryl alcohol or manganese (IV) oxide to the cultures were used to study the production of ligninolytic enzymes by Phanerochaete chrysosporium BKM-F-1767 (ATCC 24725) during semi solid state fermentation conditions. By supplementing the medium with these compounds we could stimulate the ligninolytic system of this fungus. The different carriers employed and the effect of adding veratryl alcohol or manganese (IV) oxide to the cultures were compared in order to determine the best system to produce high activities of ligninolytic enzymes. Lignin peroxidase (LiP) activities higher than 500 U/L and manganese-dependent peroxidase (MnP) activities about 1100 U/L were achieved.  相似文献   

14.
以黄孢原毛平革菌 (Phanerochaetechrysosporium)RNA为模板 ,克隆LipH8基因片段 ,研究LipH8基因在甲醇毕赤酵母中的表达。构建了甲醇酵母表达质粒pMETA_LipH8载体 ,并将其线性化后用电穿孔法导入PichiamethabolicaPMAD16 ,部分阳性克隆的PCR结果表明LipH8基因已经整合到甲醇毕赤酵母染色体上 ,经摇瓶培养筛选出表达水平较高的酵母工程菌株。胞外木质素过氧化物酶活力达 932U L。  相似文献   

15.
Manganese-dependent peroxidase (MnP) production was performed in an immobilized cell bioreactor in which Phanerochaete chrysosporium BKM-F-1767 was immobilized on polystyrene foam. The immobilized cell culture yielded significantly greater MnP activity than the conventional stationary liquid culture. Cultivation was carried out in batch mode; the effect of glucose concentration was investigated and growth kinetics parameters were found as, micromax=0.59 day(-1), Ks=0.33 g/L and Kss=14.5. Batch operation led to maximum MnP (770.82 U/L) in the culture medium containing 0.05% Tween 80, 10 g/L glucose, and 174 microM Mn2+ at 37 degrees C and pH 4.5. Enzyme productivity was obtained as 110.12 U/day/L.  相似文献   

16.
Summary C. sitophila strain TFB-27441 showed 2–3 times higher lignolytic activity thanPhanerochaete chrysosporium (BKM-F-1767 strain). Lignin had a marked effect on the ligninase activity indicating that some induction or activation mechanism is involved in lignin degradation byC. sitophila.  相似文献   

17.
The ligninolytic enzymes synthesized by Phanerochaete chrysosporium BKM-F-1767 immobilized on polyurethane foam were characterized under limiting, sufficient, and excess nutrient conditions. The fungus was grown in a nonimmersed liquid culture system under conditions close to those occurring in nature, with nitrogen concentrations ranging from 2.4 to 60 mM. This nonimmersed liquid culture system consisted of fungal mycelium immobilized on porous pieces of polyurethane foam saturated with liquid medium and highly exposed to gaseous oxygen. Lignin peroxidase (LIP) activity decreased to almost undetectable levels as the initial NH4+ levels were increased over the range from 2.4 to 14 mM and then increased with additional increases in initial NH4+ concentration. At 45 mM NH4+, LIP was overproduced, reaching levels of 800 U/liter. In addition, almost simultaneous secretion of LIP and secretion of manganese-dependent lignin peroxidase were observed on the third day of incubation. Manganese-dependent lignin peroxidase activity was maximal under nitrogen limitation conditions (2.4 mM NH4+) and then decreased to 40 to 50% of the maximal level in the presence of sufficient or excess initial NH4+ concentrations. Overproduction of LIP in the presence of a sufficient nitrogen level (24 mM NH4+) and excess nitrogen levels (45 to 60 mM NH4+) seemed to occur as a response to carbon starvation after rapid glucose depletion. The NH4+ in the extracellular fluid reappeared as soon as glucose was depleted, and an almost complete loss of CO2 was observed, suggesting that an alternative energy source was generated by self-proteolysis of cell proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Screening to detect genes encoding lignin peroxidase (LiP) and aryl-alcohol oxidase (AAO) has been carried out with 30 fungal strain using DNA probes from genes lpo of Phanerochaete chrysosporium (encoding LiP isoenzyme H8) and aao of Pleurotus eryngii. Evidence for the presence of genes closely related to lpo was found in Bjerkandera adusta, Fomes fomentarius, Ganoderma applanatum, Ganoderma australe, Lentinula degener, Peniophora gigantea, P. chrysosporium, Phanerochaete flavido-alba and Trametes tersicolor, whereas the gene aao was detected in Pleurotus species and B. adusta. The presence of both genes was only detected in B. adusta. These results suggest that different enzymatic system, formed by enzymes encoded by different genes, are responsible for lignin degradation by white-rot fungi.  相似文献   

19.
Wang H  Lu F  Sun Y  Du L 《Biotechnology letters》2004,26(20):1569-1573
The cDNA encoding for lignin peroxidase of Phanerochaete chrysosporium was expressed in the Pichia methanolica under the control of the alcohol oxidase (AUG1) promoter which was followed by either the lignin peroxidase leader peptide of Phanerochaete chrysosporium or the Saccharomyces cerevisiae alpha-factor signal peptide. Both peptides efficiently directed the secretion of lignin peroxidase from the recombinant yeast cell. The extracellular lignin peroxidase activity in two recombinants was 932 U l(-1) and 1933 U l(-1). The purity of the recombinant product was confirmed by SDS-PAGE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号