首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dnaE gene of Escherichia coli encodes the DNA polymerase (α subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.  相似文献   

2.
In this report, we establish that Drosophila ADAR (adenosine deaminase acting on RNA) forms a dimer on double-stranded (ds) RNA, a process essential for editing activity. The minimum region required for dimerization is the N-terminus and dsRNA-binding domain 1 (dsRBD1). Single point mutations within dsRBD1 abolish RNA-binding activity and dimer formation. These mutations and glycerol gradient analysis indicate that binding to dsRNA is important for dimerization. However, dimerization can be uncoupled from dsRNA-binding activity, as a deletion of the N-terminus (amino acids 1-46) yields a monomeric ADAR that retains the ability to bind dsRNA but is inactive in an editing assay, demonstrating that ADAR is only active as a dimer. Different isoforms of ADAR with different editing activities can form heterodimers and this can have a significant effect on editing in vitro as well as in vivo. We propose a model for ADAR dimerization whereby ADAR monomers first contact dsRNA; however, it is only when the second monomer binds and a dimer is formed that deamination occurs.  相似文献   

3.
Pritchard DG  Trent JO  Li X  Zhang P  Egan ML  Baker JR 《Proteins》2000,40(1):126-134
Hyaluronan lyase is secreted by most strains of the human pathogen, group B streptococcus. Site-directed mutagenesis of the enzyme identified three amino acid residues important for enzyme activity, H479, Y488, and R542. These three residues are in close proximity in the putative active site of a homology model of group B streptococcal hyaluronan lyase. The homology model was based on the crystal structure of another related glycosaminoglycan lyase, chondroitin AC lyase, which exhibits different substrate specificity. Two asparagine residues in the active site groove, N429 and N660, were also found to be essential for enzyme activity. In addition, conversion of two adjacent tryptophan residues in the groove to alanines abolished activity. All amino acids found to be essential in GBS hyaluronan lyase are conserved in both enzymes. However, several amino acids in the active site groove of the two enzymes are not conserved. In the 18 cases in which one of these amino acids in GBS hyaluronan lyase was replaced with its corresponding amino acid in chondroitin AC lyase, no major loss of activity or change in substrate specificity was observed.  相似文献   

4.
Nitric oxide synthase (NOS) is the enzyme responsible for the conversion of L-arginine to L-citrulline and nitric oxide. Dimerization of the enzyme is an absolute requirement for catalytic activity. Each NOS monomer contains an N-terminal heme-binding domain and a C-terminal reductase domain. It is unclear how the reductase domain is involved in controlling dimerization and whether dimer formation alone controls enzyme activity. Our initial studies demonstrated that no dimerization or activity could be detected when the reductase domain of rat neuronal NOS (nNOS) was expressed either separately or in combination with the heme domain. To further evaluate the reductase domain, a set of expression plasmids was created by replacing the reductase domain of nNOS with other electron-transport proteins, thereby creating nNOS chimeric fusion proteins. The rat nNOS heme domain was linked with either cytochrome P450 reductase, adrenodoxin reductase, or the reductase domain from Bacillus megaterium cytochrome P450, BM-3. All the chimeric enzymes retained the ability to dimerize but were unable to metabolize L-arginine (<8% of wildtype activity levels), indicating that dimerization alone is insufficient to produce an active enzyme. Because the greatest regions of homology between electron-transport proteins are in the flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide phosphate (NADPH) binding regions, we produced truncation mutants within the nNOS reductase domain to investigate the role of these sequences in the ability of nNOS to dimerize and to metabolize L-arginine. The results demonstrated that the deletion of the final 56 amino acids or the NADPH-binding region had no effect on dimerization but produced an inactive enzyme. However, when the FAD-binding site (located between amino acids 920 and 1161) was deleted, both activity and dimerization were abolished. These results implicate sequences within the FAD-binding site as essential for nNOS dimerization but sequences within amino acids 1373 to 1429 as essential for activity.  相似文献   

5.
Haloacid dehalogenases are enzymes that catalyze the hydrolytic removal of halogens from haloalkanoic acids. Dehalogenase IVa (DehIVa) from Burkholderia cepacia MBA4 and dehalogenase CI (DehCI) from Pseudomonas sp. strain CBS3 exhibit 68% identity. Despite their similarity DehIVa is a dimeric enzyme while DehCI is a monomer. In this work, we describe the identification of the domain that confers the dimerization function of DehIVa. Recombinant DNA molecules were constructed by fusion of the respective dehalogenase genes hdlIVa and dehCI. When amino acids 73 to 89 of DehCI were replaced by amino acids 74 to 90 of DehIVa, the recombinant molecule migrated like that of DehIVa in a nondenaturing activity-stained gel. Similarly, when residues 73 to 89 of DehIVa were replaced by the corresponding residues of DehCI, the chimera migrated as a monomer. These 17 amino acid changes were able to determine the aggregation states of the molecules. The retention of the catalytic function in these chimeras indicated that the overall folding of these proteins was not affected. Site-directed mutagenesis on hdlIVa however indicated that amino acids Phe58, Thr65, Leu78, and Phe92 of DehIVa are also important for the aggregation state of the protein. This indicates that the 17 residues are not sufficient for the dimerization of the protein.  相似文献   

6.
Dimerization specificity of Tet repressor (TetR) can be altered by changes in the core of the four-helix bundle that mediates protein-protein recognition. We demonstrate here that the affinity of subunit interaction depends also on the solvent-exposed residues at positions 128 and 179'-184', which interact across the dimerization surface. TetR(B) and (D), two naturally occurring sequence variants, differ at position 128 with respect to the monomer-monomer distances in the crystal structures and the charge of the amino acids, being glutamate in TetR(B) and arginine in TetR(D). In vivo analysis of chimeric TetR(B/D) variants revealed that the single E128R exchange does not alter the dimerization specificity of TetR(B) to the one of TetR(D). When combined with specificity mutations in alpha10, it is, however, able to increase dimerization efficiency of the TetR(B/D) chimera with TetR(D). A loss of contact analysis revealed a positive interaction between Arg-128 and residues located at positions 179'-184' of the second monomer. We constructed a hyperstable TetR(B) variant by replacing residues 128 and 179-184 by the respective TetR(D) sequence. These results establish that in addition to a region in the hydrophobic core residues at the solvent-exposed periphery of the dimerization surface participate in protein-protein recognition in the TetR four-helix bundle.  相似文献   

7.
Haloacid dehalogenases are enzymes that catalyze the hydrolytic removal of halogens from haloalkanoic acids. Dehalogenase IVa (DehIVa) from Burkholderia cepacia MBA4 and dehalogenase CI (DehCI) from Pseudomonas sp. strain CBS3 exhibit 68% identity. Despite their similarity DehIVa is a dimeric enzyme while DehCI is a monomer. In this work, we describe the identification of the domain that confers the dimerization function of DehIVa. Recombinant DNA molecules were constructed by fusion of the respective dehalogenase genes hdlIVa and dehCI. When amino acids 73 to 89 of DehCI were replaced by amino acids 74 to 90 of DehIVa, the recombinant molecule migrated like that of DehIVa in a nondenaturing activity-stained gel. Similarly, when residues 73 to 89 of DehIVa were replaced by the corresponding residues of DehCI, the chimera migrated as a monomer. These 17 amino acid changes were able to determine the aggregation states of the molecules. The retention of the catalytic function in these chimeras indicated that the overall folding of these proteins was not affected. Site-directed mutagenesis on hdlIVa however indicated that amino acids Phe58, Thr65, Leu78, and Phe92 of DehIVa are also important for the aggregation state of the protein. This indicates that the 17 residues are not sufficient for the dimerization of the protein.  相似文献   

8.
The tyrosine kinase Janus kinase 2 (JAK2) transduces signaling for the majority of known cytokine receptor family members and is constitutively activated in some cancers. Here we examine the mechanisms by which the adapter proteins SH2-Bbeta and APS regulate the activity of JAK2. We show that like SH2-Bbeta, APS binds JAK2 at multiple sites and that binding to phosphotyrosine 813 is essential for APS to increase active JAK2 and to be phosphorylated by JAK2. Binding of APS to a phosphotyrosine 813-independent site inhibits JAK2. Both APS and SH2-Bbeta increase JAK2 activity independent of their N-terminal dimerization domains. SH2-Bbeta-induced increases in JAK2 dimerization require only the SH2 domain and only one SH2-Bbeta to be bound to a JAK2 dimer. JAK2 mutations and truncations revealed that amino acids 809 to 811 in JAK2 are a critical component of a larger regulatory region within JAK2, most likely including amino acids within the JAK homology 1 (JH1) and JH2 domains and possibly the FERM domain. Together, our data suggest that SH2-Bbeta and APS do not activate JAK2 as a consequence of their own dimerization, recruitment of an activator of JAK2, or direct competition with a JAK2 inhibitor for binding to JAK2. Rather, they most likely induce or stabilize an active conformation of JAK2.  相似文献   

9.
10.
Koch B  Ma X  Løbner-Olesen A 《Plasmid》2012,68(3):159-169
RctB serves as the initiator protein for replication from oriCII, the origin of replication of Vibrio cholerae chromosome II. RctB is conserved between members of Vibrionaceae but shows no homology to known replication initiator proteins and has no recognizable sequence motifs. We used an oriCII based minichromosome to isolate copy-up mutants in Escherichia coli. Three point mutations rctB(R269H), rctB(L439H) and rctB(Y381N) and one IS10 insertion in the 3'-end of the rctB gene were obtained. We determined the maximal C-terminal deletion that still gave rise to a functional RctB protein to be 165 amino acids. All rctB mutations led to decreased RctB-RctB interaction indicating that the monomer is the active form of the initiator protein. All mutations also showed various defects in rctB autoregulation. Loss of the C-terminal part of RctB led to overinitiation by reducing binding of RctB to both rctA and inc regions that normally serve to limit initiation from oriCII. Overproduction of RctB(R269H) and RctB(L439H) led to a rapid increase in oriCII copy number. This suggests that the initiator function of the two mutant proteins is increased relative to the wild-type.  相似文献   

11.
We present the first solution structure of the HIV-1 protease monomer spanning the region Phe1-Ala95 (PR1-95). Except for the terminal regions (residues 1-10 and 91-95) that are disordered, the tertiary fold of the remainder of the protease is essentially identical to that of the individual subunit of the dimer. In the monomer, the side chains of buried residues stabilizing the active site interface in the dimer, such as Asp25, Asp29, and Arg87, are now exposed to solvent. The flap dynamics in the monomer are similar to that of the free protease dimer. We also show that the protease domain of an optimized precursor flanked by 56 amino acids of the N-terminal transframe region is predominantly monomeric, exhibiting a tertiary fold that is quite similar to that of PR1-95 structure. This explains the very low catalytic activity observed for the protease prior to its maturation at its N terminus as compared with the mature protease, which is an active stable dimer under identical conditions. Adding as few as 2 amino acids to the N terminus of the mature protease significantly increases its dissociation into monomers. Knowledge of the protease monomer structure and critical features of its dimerization may aid in the screening and design of compounds that target the protease prior to its maturation from the Gag-Pol precursor.  相似文献   

12.
13.
LytA, the main autolysin of Streptococcus pneumoniae, was the first member of the bacterial N-acetylmuramoyl-l-alanine amidase (NAM-amidase) family of proteins to be well characterized. This autolysin degrades the peptidoglycan bonds of pneumococcal cell walls after anchoring to the choline residues of the cell wall teichoic acids via its choline-binding module (ChBM). The latter is composed of seven repeats (ChBRs) of approximately 20 amino acid residues. The translation product of the lytA gene is the low-activity E-form of LytA (a monomer), which can be "converted" (activated) in vitro by choline into the fully active C-form at low temperature. The C-form is a homodimer with a boomerang-like shape. To study the structural requirements for the monomer-to-dimer modification and to clarify whether "conversion" is synonymous with dimerization, the biochemical consequences of replacing four key amino acid residues of ChBR6 and ChBR7 (the repeats involved in dimer formation) were determined. The results obtained with a collection of 21 mutated NAM-amidases indicate that Ile-315 is a key amino acid residue in both LytA activity and folding. Amino acids with a marginal position in the solenoid structure of the ChBM were of minor influence in dimer stability; neither the size, polarity, nor aromatic nature of the replacement amino acids affected LytA activity. In contrast, truncated proteins were drastically impaired in their activity and conversion capacity. The results indicate that dimerization and conversion are different processes, but they do not answer the questions of whether conversion can only be achieved after a dimer formation step.  相似文献   

14.
The mariner Mos1 synaptic complex consists of a tetramer of transposase molecules that bring together the two ends of the element. Such an assembly requires at least two kinds of protein-protein interfaces. The first is involved in "cis" dimerization, and consists of transposase molecules bound side-by-side on a single DNA molecule. The second, which is involved in "trans" dimerization, consists of transposase molecules bound to two different DNA molecules. Here, we used biochemical and genetic methods to enhance the definition of the regions involved in cis and trans-dimerization in the mariner Mos1 transposase. The cis and trans-dimerization interfaces were both found within the first 143 amino acid residues of the protein. The cis-dimerization activity was mainly contained in amino acids 1-20. The region spanning from amino acid residues 116-143, and containing the WVPHEL motif, was involved in the cis- to trans-shift as well as in trans-dimerization stabilization. Although the transposase exists mainly as a monomer in solution, we provide evidence that the transposase cis-dimer is the active species in inverted terminal repeat (ITR) binding. We also observed that the catalytic domain of the mariner Mos1 transposase modulates efficient transposase-transposase interactions in the absence of the transposon ends.  相似文献   

15.
Interaction between viral proteins is necessary for viral replication and viral particle assembly. We used the yeast two-hybrid assay to identify interactions among all the mature proteins of the hepatitis C virus. The interaction between NS3 and NS3 was one of the strongest viral protein-protein interactions detected. The minimal region required for this interaction was mapped to a specific subdomain of 174 amino acids in the N terminus of the helicase region. Random mutations in the minimal region were generated by PCR, and mutants that failed to interact with a wild-type minimal fragment were isolated using the yeast two-hybrid assay as a screen. Three of these mutations resulted in a reduction or a loss of interaction between helicases. Analytical gel filtration showed that in the presence of an oligonucleotide, wild-type helicases form dimers whereas the mutants remain mostly monomeric. All three mutants were partially or almost inactive when assayed for helicase activity in vitro. Mixing a mutant helicase (Y267S) with wild-type helicase did not dramatically affect helicase activity. These data indicate that dimerization of the helicase is important for helicase activity. The mutations that reduce self-association of the helicase may define the key residues involved in NS3-NS3 dimerization.  相似文献   

16.
Cytosolic sulfotransferases sulfate steroids such as estrogens and hydroxysteroids. The enzymes, including human estrogen sulfotransferase (hEST) and hydroxysteroid sulfotransferase (hHST), are generally homodimers in solution with mouse estrogen sulfotransferase (mEST) being one of few exceptions. To identify the amino acid residues responsible for the dimerization, eight residues on the surface of hEST were mutated to their counterparts in mEST and mutated hESTs were then analyzed by gel filtration chromatography. A single mutation of Val(269) to Glu was sufficient to convert hEST to a monomer and the corresponding mutation of Val(260) also altered hHST to a monomer. The hHST crystal structure revealed a short stretch of peptide with the side-chains from two hHST monomers forming a hydrophobic zipper-like structure enforced by ion pairs at both ends. This peptide consisted of 10 residues near the C-terminus that, including the critical Val residue, is conserved as KXXXTVXXXE in nearly all cytosolic sulfotransferases. When mEST underwent the double mutations Pro269Thr/Glu270Val dimerization resulted. Thus, the KXXXTVXXXE sequence appears to be the common protein-protein interaction motif that mediates the homo- as well as heterodimerization of cytosolic sulfotransferases.  相似文献   

17.
The Ca(2+)-sensing receptor (CaSR) belongs to the class III G-protein-coupled receptors (GPCRs), which include receptors for pheromones, amino acids, sweeteners, and the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). These receptors are characterized by a long extracellular amino-terminal domain called a Venus flytrap module (VFTM) containing the ligand binding pocket. To elucidate the molecular determinants implicated in Ca(2+) recognition by the CaSR VFTM, we developed a homology model of the human CaSR VFTM from the x-ray structure of the metabotropic glutamate receptor type 1 (mGluR1), and a phylogenetic analysis of 14 class III GPCR VFTMs. We identified critical amino acids delineating a Ca(2+) binding pocket predicted to be adjacent to, but distinct from, a cavity reminiscent of the binding site described for amino acids in mGluRs, GABA-B receptor, and GPRC6a. Most interestingly, these Ca(2+)-contacting residues are well conserved within class III GPCR VFTMs. Our model was validated by mutational and functional analysis, including the characterization of activating and inactivating mutations affecting a single amino acid, Glu-297, located within the proposed Ca(2+) binding pocket of the CaSR and associated with autosomal dominant hypocalcemia and familial hypocalciuric hypercalcemia, respectively, genetic diseases characterized by perturbations in Ca(2+) homeostasis. Altogether, these data define a Ca(2+) binding pocket within the CaSR VFTM that may be conserved in several other class III GPCRs, thereby providing a molecular basis for extracellular Ca(2+) sensing by these receptors.  相似文献   

18.
E E Biswas  S B Biswas 《Biochemistry》1999,38(34):10929-10939
We have analyzed the mechanism of single-stranded DNA (ssDNA) binding mediated by the C-terminal domain gamma of the DnaB helicase of Escherichia coli. Sequence analysis of this domain indicated a specific basic region, "RSRARR", and a leucine zipper motif that are likely involved in ssDNA binding. We have carried out deletion as well as in vitro mutagenesis of specific amino acid residues in this region in order to determine their function(s) in DNA binding. The functions of the RSRARR domain in DNA binding were analyzed by site-directed mutagenesis. DnaBMut1, with mutations R(328)A and R(329)A, had a significant decrease in the DNA dependence of ATPase activity and lost its DNA helicase activity completely, indicating the important roles of these residues in DNA binding and helicase activities. DnaBMut2, with mutations R(324)A and R(326)A, had significantly attenuated DNA binding as well as DNA-dependent ATPase and DNA helicase activities, indicating that these residues also play a role in DNA binding and helicase activities. The role(s) of the leucine zipper dimerization motif was (were) determined by deletion analysis. The DnaB Delta 1 mutant with a 55 amino acid C-terminal deletion, which left the leucine zipper and basic DNA binding regions intact, retained DNA binding as well as DNA helicase activities. However, the DnaB Delta 2 mutant with a 113 amino acid C-terminal deletion that included the leucine zipper dimerization motif, but not the RSRARR sequence, lost DNA binding, DNA helicase activities, and hexamer formation. The major findings of this study are (i) the leucine zipper dimerization domain, I(361)-L(389), is absolutely required for (a) dimerization and (b) ssDNA binding; (ii) the base-rich RSRARR sequence is required for DNA binding; (iii) three regions of domain gamma (gamma I, gamma II, and gamma III) differentially regulate the ATPase activity; (iv) there are likely three ssDNA binding sites per hexamer; and (v) a working model of DNA unwinding by the DnaB hexamer is proposed.  相似文献   

19.
20.
To investigate their role in receptor coupling to G(q), we mutated all basic amino acids and some conserved hydrophobic residues of the cytosolic surface of the alpha(1b)-adrenergic receptor (AR). The wild type and mutated receptors were expressed in COS-7 cells and characterized for their ligand binding properties and ability to increase inositol phosphate accumulation. The experimental results have been interpreted in the context of both an ab initio model of the alpha(1b)-AR and of a new homology model built on the recently solved crystal structure of rhodopsin. Among the twenty-three basic amino acids mutated only mutations of three, Arg(254) and Lys(258) in the third intracellular loop and Lys(291) at the cytosolic extension of helix 6, markedly impaired the receptor-mediated inositol phosphate production. Additionally, mutations of two conserved hydrophobic residues, Val(147) and Leu(151) in the second intracellular loop had significant effects on receptor function. The functional analysis of the receptor mutants in conjunction with the predictions of molecular modeling supports the hypothesis that Arg(254), Lys(258), as well as Leu(151) are directly involved in receptor-G protein interaction and/or receptor-mediated activation of the G protein. In contrast, the residues belonging to the cytosolic extensions of helices 3 and 6 play a predominant role in the activation process of the alpha(1b)-AR. These findings contribute to the delineation of the molecular determinants of the alpha(1b)-AR/G(q) interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号