共查询到20条相似文献,搜索用时 15 毫秒
1.
Repair of x-ray-induced deoxyribonucleic acid single-strand breaks in xth mutants of Escherichia coli. 总被引:2,自引:1,他引:2 下载免费PDF全文
An exonuclease III-deficient strain of Escherichia coli K-12, BW2001 (xthA11), was unable to perform rapid repair of X-ray-induced deoxyribonucleic acid single-strand breaks and appeared to have a defect in the priming of the 3'-termini necessary for initiation of repair synthesis at the breaks. This defect cannot be explained solely by the lack of exonuclease III activity, because other xth mutants tested, including a deletion mutant, repaired radiation-induced strand breaks at close to the normal rate. 相似文献
2.
Characterization of intracellular DNA strand breaks induced by neocarzinostatin in Escherichia coli cells. 下载免费PDF全文
DNA strand breaks induced by Neocarzinostatin in Escherichia coli cells have been characterized. Radioactively labeled phage lambda DNA was introduced into lysogenic host bacteria allowing the phage DNA to circularize into superhelical molecules. After drug treatment DNA single- and double-strand breaks were measured independently after neutral sucrose gradient sedimentation. The presence of alkali-labile lesions was measured in parallel in alkaline sucrose gradients. The cell envelope provided an efficient protection towards the drug, since no strand breaks were detected unless the cells were made permeable with toluene or with hypotonic Tris buffer. In permeable cells, no double strand breaks could be detected, even at high NCS concentration (100 micrograms/ml). Induction of single-strand breaks leveled off after 15 min at 20 degrees C in the presence of 2 mM mercaptoethanol. Exposure to 0.3N NaOH doubled the number of strand breaks. No enzymatic repair of the breaks could be observed. 相似文献
3.
4.
5.
6.
Deoxyribonucleic acid strand breaks during freeze-drying and their repair in Escherichia coli. 下载免费PDF全文
Freeze-drying of Escherichia coli cells caused strand breaks of deoxyribonucleic acid (DNA) in both radiation-sensitive and -resistant strains. However, in the radiation-resistant strain E. coli B/r the damaged DNA was repaired after rehydration, whereas in the radiation-sensitive strain E. coli Bs-1 the damaged DNA was not repaired and the DNA was degraded. Repeated freeze-drying did not break the damaged DNA into smaller pieces. 相似文献
7.
8.
Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. 总被引:15,自引:8,他引:15 下载免费PDF全文
Near-ultraviolet (300 to 400 nm) irradiation of L-tryptophan yielded H2O2 (a toxic photoproduct) that was selectively lethal for rec and polA1 Escherichia coli mutants. H2O2 treatment of cells resulted in the induction of single-strand deoxyribonucleic acid breaks. These breaks were repaired to only a small extent in polA1, recA recB, and recA mutants, but were efficiently repaired in wild-type strains. We conclude that H2O2 deoxyribonucleic acid lesions require both the polA+ and recA+ pathways for repair. 相似文献
9.
H Nakamura T Morita S Yoshida 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1976,29(3):201-210
An enzyme-histochemical method was used to detect X-ray-induced strand breaks in the DNA of mammalian tissue cells. Paraffin sections of ethanol-fixed mouse brain and liver were incubated with three kinds of exogenous DNA polymerizing enzymes, and the amount of in situ incorporation of 3H-deoxyribonucleotides into nuclear DNA was examined by autoradiography. No increase in labelling intensity was observed over nuclei of neurons and astrocytes in cerebral cortex, or over hepatocytes in liver immediately after X-irradiation when compared with unirradiated specimens. In liver Kupffer cells, heavily-labelled nuclei appeared from 30 min to 6 hours after, but were not observed immediately after X-irradiation. This method cannot, therefore, be applied to detect the strand breaks directly induced by X-rays, but it is useful in detecting secondary DNA degradation occurring as a result of nuclear degradation. 相似文献
10.
We have previously shown that human cancer cells deficient in DNA mismatch repair (MMR) are resistant to the chemotherapeutic methylating agent temozolomide (TMZ) and can be sensitized by the base excision repair (BER) blocking agent methoxyamine (MX) [21]. To further characterize BER-mediated repair responses to methylating agent-induced DNA damage, we have now evaluated the effect of MX on TMZ-induced DNA single strand breaks (SSB) by alkaline elution and DNA double strand breaks (DSB) by pulsed field gel electrophoresis in SW480 (O6-alkylguanine-DNA-alkyltransferase [AGT]+, MMR wild type) and HCT116 (AGT+, MMR deficient) colon cancer cells. SSB were evident in both cell lines after a 2-h exposure to equitoxic doses of temozolomide. MX significantly increased the number of TMZ-induced DNA-SSB in both cell lines. In contrast to SSB, TMZ-induced DNA-DSB were dependent on MMR status and were time-dependent. Levels of 50 kb double stranded DNA fragments in MMR proficient cells were increased after TMZ alone or in combination with O6-benzylguanine or MX, whereas, in MMR deficient HCT116 cells, only TMZ plus MX produced significant levels of DNA-DSB. Levels of AP endonuclease, XRCC1 and polymerase beta were present in both cell lines and were not significantly altered after MX and TMZ. However, cleavage of a 30-mer double strand substrate by SW480 and HCT116 crude cell extracts was inhibited by MX plus TMZ. Thus, MX potentiation of TMZ cytotoxicity may be explained by the persistence of apurinic/apyrimidinic (AP) sites not further processed due to the presence of MX. Furthermore, in MMR-deficient, TMZ-resistant HCT116 colon cancer cells, MX potentiates TMZ cytotoxicity through formation of large DS-DNA fragmentation and subsequent apoptotic signalling. 相似文献
11.
12.
Role of exonucleases V and VIII in adenosine 5''-triphosphate- and deoxynucleotide triphosphate-dependent strand break repair in toluenized Escherichia coli cells treated with X-rays. 下载免费PDF全文
E A Waldstein 《Journal of bacteriology》1979,139(1):1-7
The repair of X-ray-induced strand breaks was studied in permeabilized Escherichia coli recBC cells deficient for the adenosine 5'-triphosphate (ATP)-dependent exonuclease V and in recBC sbcA cells that possess the ATP-independent exonuclease VIII. It is shown that repair induced by additon of ATP does not take place in recBC and recBC sbcB cells and is limited in recBC sbcA cells. ATP-dependent repair is nevertheless observable if together with ATP a mixture of deoxynucleotide monophosphates is supplied to the cells. These data fit with the assumption that in wild-type cells ATP-dependent repair involves exonuclease V-induced deoxyribonucleic acid degradation and rephosphorylation of the degradation products which are reused for deoxyribonucleic acid polymerase I-dependent break closure. Repair in the presence of deoxynucleotide triphosphates rejoins a similar fraction of breaks in all strains tested irrespective of the amount of postirradiation degradation resulting from exonuclease V and exonuclease VIII activities. Thus, exonuclease V is dispensable for deoxynucleotide triphosphate-dependent repair, i.e., does not "clean" the ends of breaks produced by X-irradiation. ATP- and deoxynucleotide triphosphate-dependent repair are not additive and seem to repair the same population of deoxyribonucleic acid molecules damaged by X-irradiation. 相似文献
13.
B Rydberg 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1984,46(5):521-527
A preliminary method is reported of alkaline unwinding of DNA within single cells and quantitation of the single-stranded and double-stranded DNA with the fluorescent probe acridine orange. A suspension of alkali-treated cells is obtained and analysed by flow cytometry. An increase in the amount of single-stranded DNA is taken as an indication of strand breaks. An advantage of this method is that a large number of cells can be individually analysed for DNA strand breaks. A measurement of DNA content is also obtained, making it possible to discriminate between cells in various parts of the cell cycle. 相似文献
14.
15.
Deoxyribonucleic acid strand breaks during drying of Escherichia coli on a hydorohobic filter membrane. 总被引:3,自引:2,他引:3 下载免费PDF全文
Cells of Escherichia coli mounted on a hydrophobic filter membrane were dried under various vapor pressures. A mutant defective in deoxyribonucleic acid repair (uvrA recA) was more sensitive to drying at a water activity of 0.53 or below than the parent strain but not at a water activity of 0.75 and above. Sucrose gradient studies showed that single- and double-strand breaks of deoxyribonucleic acid occurred at a water activity of 0.53 or below, but no breaks could be observed at a water activity of 0.75 or above. These results were observed in all cells rehydrated with 0.03 M tris (hydroxymethyl) aminomethane-hydrocholoride buffer solution at 0 or 37 degrees C, in the presence or absence of oxygen, with saturated water vapor or with a hypertonic solution followed by a gradual dilution. Freezable water was detected in the cells only at a water activity above 0.75 by differential scanning calorimetry. Removal of unfreezable water of cells in the drying, therfore, might induce deoxyribonucleic acid strand breaks. 相似文献
16.
Repair of near-ultraviolet (365 nm)-induced strand breaks in Escherichia coli DNA. The role of the polA and recA gene products. 总被引:1,自引:0,他引:1 下载免费PDF全文
The action of near-ultraviolet (UV-365 nm) radiation in cellular inactivation (biological measurements) and induction and repair of DNA strand breaks (physical measurements) were studied in a repair-proficient strain and in polA-, recA-, uvrA-, and polA uvrA-deficient strains of Escherichia coli K-12. The induction of breaks in the polA and polA uvrA strains was linear with dose (4.0 and 3.7 X 10(-5) breaks/2.5 X 10(9) daltons/Jm-2, respectively). However, in the recA-, uvrA-, and repair-proficient strains, there was an initial lag in break induction at low doses and then a linear induction of breaks at higher doses with rates of 4.6, 2.8, and 3.2 X 10(-5) breaks/2.5 X 10(9) daltons/Jm-2, respectively. We interpret these strain differences as indicating simultaneous induction and repair of breaks in polymerase 1 (polA)-proficient strains under the 0 degrees C, M9 buffer irradiation conditions that, for maximum efficiency, require both the polA and recA gene products. Strand-break rejoining also occurred at 30 degrees C in complete growth medium. We propose that at least three (and possibly four) distinct types of pathways can act to reduce the levels of 365-nm radiation-induced strand breaks. A quantitative comparison of the number of breaks remaining with the number of lethal events remaining after repair in complete medium at 30 degrees C showed that between one and three breaks remain per lethal event in the wild-type and recA strains, whereas in the polA strain one order of magnitude more breaks were induced. 相似文献
17.
Cells of Escherichia coli mounted on a hydrophobic filter membrane were dried under various vapor pressures. A mutant defective in deoxyribonucleic acid repair (uvrA recA) was more sensitive to drying at a water activity of 0.53 or below than the parent strain but not at a water activity of 0.75 and above. Sucrose gradient studies showed that single- and double-strand breaks of deoxyribonucleic acid occurred at a water activity of 0.53 or below, but no breaks could be observed at a water activity of 0.75 or above. These results were observed in all cells rehydrated with 0.03 M tris (hydroxymethyl) aminomethane-hydrocholoride buffer solution at 0 or 37 degrees C, in the presence or absence of oxygen, with saturated water vapor or with a hypertonic solution followed by a gradual dilution. Freezable water was detected in the cells only at a water activity above 0.75 by differential scanning calorimetry. Removal of unfreezable water of cells in the drying, therfore, might induce deoxyribonucleic acid strand breaks. 相似文献
18.
19.
Nucleoside triphosphate dependence of repair replication in toluenized Escherichia coli 总被引:3,自引:0,他引:3
Ultraviolet irradiation of Escherichia coli stimulates non-conservative DNA synthesis in cells rendered permeable to nucleoside triphosphates by treatment with toluene. This synthesis, like semi-conservative replication, proceeds in the presence of millimolar concentrations of ATP. Unlike semi-conservative replication, the ultraviolet-stimulated DNA synthesis can proceed if other nucleoside triphosphates are substituted for ATP. The selective dependence of semi-conservative replication upon ATP has been used to study the repair mode of synthesis in the absence of the semi-conservative mode and to demonstrate the dependence of ultraviolet-stimulated synthesis upon the uvrA gene product. Studies with recB mutants show that the nucleoside triphosphate-dependent ultravioletstimulated DNA synthesis occurs in strains deficient in the RecBC deoxyribonuclease. 相似文献
20.
Ionizing radiation and radiomimetic drugs such as bleomycin, calichieamycin, neocarzinostatin chromophore, and other synthetic agents can produce both single and double strand breaks in DNA. The ability to study the structure-activity relationships of single and double-strand break repair, lethality, and mutagenesis in vivo is complicated by the numerous types and sites of DNA cleavage products that can be induced by such agents. The ability to "cage" such breaks in DNA might help to further such studies and additionally afford a mechanism for activating and deactivating nucleic acid based drugs and probes. The major type of single strand break induced by ionizing radiation is a 3'- and 5'-phosphate terminated single nucleotide gap. Previously, a caged strand break of this type had been developed that was designed to produce the 5'-phosphate directly upon irradiation with 366 nm light, and the 3'-phosphate by a subsequent beta-elimination reaction [Ordoukhanian, P., and Taylor, J.-S. (1995) J. Am. Chem. Soc. 117, 9570]. Unfortunately, the release of the 3'-phosphate group was quite slow at pH 7. To circumvent this problem, a second caged strand break has been developed that produces the 3'-phosphate directly upon irradiation, and the 5'-phosphate by a subsequent beta-elimination reaction. When this caged strand break was used in tandem with the previous caged strand break, 5'- and 3'-phosphate terminated gaps could be directly produced by irradiation with 366 nm light. These caged single strand breaks were also incorporated in tandem into hairpin substrates to demonstrate that they could be used to cage double strand breaks. These caged single strand breaks should be generally useful for generating site-specific DNA single and double strand breaks and gaps, using wavelengths and doses of light that are nondetrimental to biological systems. Because the position of the single strand break can be varied, it should now be possible to examine the effect of the sequence context and cleavage pattern of single and double strand breaks on the lethality and mutagenicity of this important class of DNA damage. 相似文献