首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmolytes are rapidly lost from the ischemic heart, an effect thought to benefit the heart by reducing the osmotic load. However, the observation that chronic lowering of one of the prominent osmolytes, taurine, is more beneficial to the ischemic heart than acute taurine loss suggests that osmotic stress may benefit the ischemic heart through multiple mechanisms. The present study examines the possibility that chronic osmotic stress preconditions the heart in part by stimulating a cardioprotective, osmotic-linked signaling pathway. Hyperosmotic stress was produced by treating rat neonatal cardiomyocytes during the pre-hypoxic period with either the taurine depleting agent, #x003B2;-alanine (5 mM), or with medium containing 25 mM mannitol. The cells were then subjected to chemical hypoxia in medium containing 3 mM Amytal and 10 mM deoxyglucose but lacking #x003B2;-alanine and mannitol. Cells that had been pretreated with either 5 mM #x003B2;-alanine or 25 mM mannitol exhibited resistance against hypoxia-induced apoptosis and necrosis. Associated with the osmotically preconditioned state was the activation of Akt and the inactivation of the pro-apoptotic factor, Bad, both events blocked by the inhibition of PI 3-kinase. However, preconditioning the cardiomyocyte with mannitol had no effect on the generation of free radicals during the hypoxic period. Osmotic stress also promoted the upregulation of the anti-apoptotic factor, Bcl-2. Since inhibition of PI 3-kinase with Wortmannin also prevents osmotic-mediated cardioprotection, we conclude that hyperosmotic-mediated activation of the PI 3-kinase/Akt pathway contributes to osmotic preconditioning. (Mol Cell Biochem 269: 59–67, 2005)  相似文献   

2.
Our previous studies have demonstrated that the JNK signaling pathway plays an important role in ischemic brain injury and is mediated via glutamate receptor 6. Others studies have shown that N-methyl-d-aspartate (NMDA) receptor is involved in the neuroprotection of ischemic preconditioning. Here we examined whether ischemic preconditioning down-regulates activation of the mixed lineage kinase-JNK signaling pathway via NMDA receptor-mediated Akt1 activation. In our present results, ischemic preconditioning could not only inhibit activations of mixed lineage kinase 3, JNK1/2, and c-Jun but also enhanced activation of Akt1. In addition, both NMDA (an agonist of NMDA receptor) and preconditioning showed neuroprotective effects. In contrast, ketamine, an antagonist of NMDA receptor, prevented the above effects of preconditioning. Further studies indicated that LY294002, an inhibitor of phosphoinositide 3-kinase that is an upstream signaling protein of Akt1, could block neuroprotection of preconditioning, and KN62, an inhibitor of calmodulin-dependent protein kinase, also achieved the same effects as LY294002. Therefore, both phosphoinositide 3-kinase and calmodulin-dependent protein kinase are involved in the activation of Akt1 in ischemic tolerance. Taken together, our results indicate that preconditioning can inhibit activation of JNK signaling pathway via NMDA receptor-mediated Akt1 activation and induce neuroprotection in hippocampal CA1 region.  相似文献   

3.
Diabetes mellitus is a major risk factor for the development of vascular complications. We hypothesized that hyperglycemia decreases endothelial cell (EC) proliferation and survival via phosphatidylinositol 3-kinase (PI3k) and Akt signaling pathways. We cultured human umbilical vein ECs (HUVEC) in 5, 20, or 40 mM d-glucose. Cells grown in 5, 20, and 40 mM mannitol served as a control for osmotic effects. We measured EC proliferation for up to 15 days. We assessed apoptosis by annexin V and propidium iodide staining and flow cytometry, analyzed cell lysates obtained on culture day 8 for total and phosphorylated PI3k and Akt by Western blot analysis, and measured Akt kinase activity using a GSK fusion protein. HUVEC proliferation was also tested in the presence of pharmacological inhibitors of PI3k-Akt (wortmannin and LY294002) and after transfection with a constitutively active Akt mutant. ECs in media containing 5 mM d-glucose (control) exhibited log-phase growth on days 7-10. d-Glucose at 20 and 40 mM significantly decreased proliferation versus control (P < 0.05 for both), whereas mannitol did not impair EC proliferation. Apoptosis increased significantly in HUVEC exposed to 40 mM d-glucose. d-Glucose at 40 mM significantly decreased tyrosine-phosphorylated PI3k, threonine 308-phosphorylated-Akt, and Akt activity relative to control 5 mM d-glucose. Pharmacological inhibition of PI3k-Akt resulted in a dose-dependent decrease in EC proliferation. Transfection with a constitutively active Akt mutant protected ECs by enhancing proliferation when grown in 20 and 40 mM d-glucose. We conclude that d-glucose regulates Akt signaling through threonine phosphorylation of Akt and that hyperglycemia-impaired PI3k-Akt signaling may promote EC proliferative dysfunction in diabetes.  相似文献   

4.
Aquaporin8 (AQP8) is a transmembrane water channel that is found mainly in hepatocytes. The direct involvement of AQP8 in high glucose condition has not been established. Therefore, this study examined the effects of high glucose on AQP8 and its related signal pathways in primary cultured chicken hepatocytes. High glucose increased the movement of AQP8 from the intracellular membrane to plasma membrane in a 30 mM glucose concentration and in a time- (> or =10 min) dependent manner. On the other hand, 30 mM mannitol did not affect the translocation of AQP8, which suggested the absence of osmotic effect. Thirty millimolar glucose increased intracellular cyclic adenosine 3, 5-monophosphate (cAMP) level. Moreover, high glucose level induced Akt phosphorylation, protein kinase C (PKC) activation, p44/42 mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-jun NH2-terminal kinase (JNK) phosphorylation. On the other hand, inhibition of each pathway by SQ 22536 (adenylate cyclase inhibitor), LY 294002 (PI3-K phosphatidylinositol 3-kinase inhibitor), Akt inhibitor, staurosporine (PKC inhibitor), PD 98059 (MEK inhibitor), SB 203580 (p38 MAPK inhibitor), or SP 600125 (JNK inhibitor) blocked 30 mM glucose-induced AQP8 translocation, respectively. In addition, inhibition of microtubule movement with nocodazole blocked high glucose-induced AQP8 translocation. High glucose level also increased the level of kinesin light chain and dynein protein expression. In conclusion, high glucose level stimulates AQP8 via cAMP, PI3-K/Akt, PKC, and MAPKs pathways in primary cultured chicken hepatocytes.  相似文献   

5.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

6.
7.
In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway.  相似文献   

8.
Acute myocardial infarction (AMI), as a severe consequence of coronary atherosclerotic heart disease, always contributes to the loss of myocardial cells. Mounting evidence shows that annexin protects the myocardium from ischemic injury. In this study, we examine the inhibition of annexin A3 (ANXA3) on AMI through the phosphatidylinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. We selected rats to build an AMI model which was then assigned into different groups. The hemodynamic parameters after transfection were detected by using enzyme-linked immunosorbent assay. The effect of silencing of ANXA3 on inflammatory reaction and the PI3K/Akt signaling pathway was assessed. Rats transfected with ANXA3-short hairpin RNA had alleviated hemodynamics, inflammatory reaction, decreased infarct size, α-smooth muscle actin, Collagen I, and Collagen III as well as an increased vascular endothelial growth factor. Silencing ANAX3 would promote repair and healing of myocardial tissue by activation of the PI3K/Akt signaling pathway. Collectively, our study provides evidence that the downregulation of ANXA3 promotes the repair and healing of myocardial tissues by activating the PI3K/Akt signaling pathway.  相似文献   

9.
Preconditioning-induced ischemic tolerance is well documented in the brain, but cell-specific responses and mechanisms require further elucidation. The aim of this study was to develop an in vitro model of ischemic tolerance in human brain microvascular endothelial cells (HBMECs) and to examine the roles of phosphatidylinositol 3-kinase (PI3-kinase)/Akt and the inhibitor-of- apoptosis protein, survivin, in the ability of hypoxic preconditioning (HP) to protect endothelium from apoptotic cell death. Cultured HBMECs were subjected to HP, followed 16 h later by complete oxygen and glucose deprivation (OGD) for 8 h; cell viability was quantified at 20 h of reoxygenation (RO) by the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide assay. HBMECs were examined at various times after HP or OGD/RO using immunoblotting and confocal laser scanning immunofluorescence microscopy for appearance of apoptotic markers and expression of phosphorylated (p)-Akt and p-survivin. Causal evidence for the participation of the PI3-kinase/Akt pathway in HP-induced protection and p-survivin upregulation was assessed by the PI3-kinase inhibitor LY-294002. HP significantly reduced OGD/RO-induced injury by 50% and also significantly reduced the OGD-induced translocation of apoptosis-inducing factor (AIF) from mitochondria to nucleus and the concomitant cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). PI3-kinase inhibition blocked HP-induced increases in Akt phosphorylation, reversed the effects of HP on OGD-induced AIF translocation and PARP-1 cleavage, blocked HP-induced survivin phosphorylation, and ultimately attenuated HP-induced protection of HBMECs from OGD. Thus HP promotes an antiapoptotic phenotype in HBMECs, in part by activating survivin via the PI3-kinase/Akt pathway. Survivin and other phosphorylation products of p-Akt may be therapeutic targets to protect cerebrovascular endothelium from apoptotic injury following cerebral ischemia.  相似文献   

10.
In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1-associated phosphoinositide 3 (PI 3)-kinase activity in response to physiological insulin concentrations. Insulin-induced membrane ruffling, which is dependent on PI 3-kinase activation, was also markedly reduced. These inhibitory effects were associated with an increase in IRS-1 Ser307 phosphorylation. Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation. In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces the phosphorylation of IRS-1 on Ser307 by an mTOR-dependent pathway. This, in turn, leads to a decrease in early proximal signaling events induced by physiological insulin concentrations. On the other hand, prolonged osmotic stress alters IRS-1 function by inducing its degradation, which could contribute to the down-regulation of insulin action.  相似文献   

11.
Phosphatidylinositol (PI) 3-kinase and its downstream effector Akt are thought to be signaling intermediates that link cell surface receptors to p70 S6 kinase. We examined the effect of a G(q)-coupled receptor on PI 3-kinase/Akt signaling and p70 S6 kinase activation using Rat-1 fibroblasts stably expressing the human alpha(1A)-adrenergic receptor. Treatment of the cells with phenylephrine, a specific alpha(1)-adrenergic receptor agonist, activated p70 S6 kinase but did not activate PI 3-kinase or any of the three known isoforms of Akt. Furthermore, phenylephrine blocked the insulin-like growth factor-I (IGF-I)-induced activation of PI 3-kinase and the phosphorylation and activation of Akt-1. The effect of phenylephrine was not confined to signaling pathways that include insulin receptor substrate-1, as the alpha(1)-adrenergic receptor agonist also inhibited the platelet-derived growth factor-induced activation of PI 3-kinase and Akt-1. Although increasing the intracellular Ca(2+) concentration with the ionophore A23187 inhibited the activation of Akt-1 by IGF-I, Ca(2+) does not appear to play a role in the phenylephrine-mediated inhibition of the PI 3-kinase/Akt pathway. The differential ability of phenylephrine and IGF-I to activate Akt-1 resulted in a differential ability to protect cells from UV-induced apoptosis. These results demonstrate that activation of p70 S6 kinase by the alpha(1A)-adrenergic receptor in Rat-1 fibroblasts occurs in the absence of PI 3-kinase/Akt signaling. Furthermore, this receptor negatively regulates the PI 3-kinase/Akt pathway, resulting in enhanced cell death following apoptotic insult.  相似文献   

12.
Adenosine and acetylcholine (ACh) trigger preconditioning through different signaling pathways. We tested whether either could activate myocardial phosphatidylinositol 3-kinase (PI3-kinase), a putative signaling protein in ischemic preconditioning. We used phosphorylation of Akt, a downstream target of PI3-kinase, as a reporter. Exposure of isolated rabbit hearts to ACh increased Akt phosphorylation 2.62 +/- 0.33 fold (P = 0.001), whereas adenosine caused a significantly smaller increase (1.52 +/- 0.08 fold). ACh-induced activation of Akt was abolished by the tyrosine kinase blocker genistein indicating at least one tyrosine kinase between the muscarinic receptor and Akt. ACh-induced Akt activation was blocked by the Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478), an epidermal growth factor receptor (EGFR) inhibitor, suggesting phosphorylation of a receptor tyrosine kinase in an Src tyrosine kinase-dependent manner. ACh caused tyrosine phosphorylation of the EGFR, which could be blocked by PP2, thus supporting this receptor hypothesis. AG-1478 failed to block the cardioprotection of ACh, however, suggesting that other receptor tyrosine kinases might be involved. Therefore, G(i) protein-coupled receptors can activate PI3-kinase/Akt through transactivation of receptor tyrosine kinases in an Src tyrosine kinase-dependent manner.  相似文献   

13.
According to the classical view, the cytoprotective effect of inhibitors of poly(ADP-ribose)polymerase (PARP) in oxidative stress was based on the prevention of NAD+ and ATP depletion, thus the attenuation of necrosis. Our previous data on PARP inhibitors in an inflammatory model suggested that PARP-catalyzed ADP-ribosylations may affect signaling pathways, which can play a significant role in cell survival. To clarify the molecular mechanism of cytoprotection, PARP activity was inhibited pharmacologically by suppressing PARP-1 expression by a small interfering RNA (siRNA) technique or by transdominantly expressing the N-terminal DNA-binding domain of PARP-1 (PARP-DBD) in cultured cells. Cell survival, activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt system, and the preservation of mitochondrial membrane potential were studied in hydrogen peroxide-treated WRL-68 cells. Our data showed that suppression of the single-stranded DNA break-induced PARP-1 activation by pharmacological inhibitor, siRNA, or by the transdominant expression of PARP-DBD protected cells from oxidative stress and induced the phosphorylation and activation of Akt. Furthermore, prevention of Akt activation by inhibiting PI3-kinase counteracted the cytoprotective effect of PARP inhibition. Microscopy data showed that PARP inhibition-induced Akt activation was responsible for protection of mitochondria in oxidative stress because PI3-kinase inhibitors diminished the protective effect of PARP inhibition. Similarly, Src kinase inhibitors, which decrease Akt phosphorylation, also counteracted the protection of mitochondrial membrane potential supporting the pivotal role of Akt in cytoprotection. These data together with the finding that PARP inhibition in the absence of oxidative stress induced the phosphorylation and activation of Akt indicate that PARP inhibition-induced Akt activation is dominantly responsible for the cytoprotection in oxidative stress.  相似文献   

14.
Protein phosphorylation in a human glioblastoma cell line, T98G, was examined after exposure to oxidative stress in vitro. Hydrogen peroxide (1 mM) markedly induced tyrosine phosphorylation of focal adhesion kinase (FAK) and serine phosphorylation of Akt at 1 h after stimulation. Concommitantly, the association of FAK with phosphatidylinositide 3'-OH-kinase (PI 3-kinase) was also observed by the hydrogen peroxide stimulation. When T98G cells were incubated with wortmannin, a PI 3-kinase inhibitor, both PI 3-kinase activity and phosphorylation of Akt were inhibited, whereas apoptosis by oxidative stress was accelerated. Concomitant with apoptosis, elevated level of CPP32 protease activity (caspase-3) was observed, with decreases in Bcl-2 protein and increases in Bax protein. These results suggested that in the signal transduction pathway from FAK to PI 3-kinase, Akt promotes survival. Thus, it became apparent that FAK is the upstream signal protein of the PI 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis in T98G cells.  相似文献   

15.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.  相似文献   

16.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

17.
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.  相似文献   

18.
The phosphatidylinositol (PI) 3-kinase pathway is an important regulator of cell survival. In human alveolar macrophages, we found that LPS activates PI 3-kinase and its downstream effector, Akt. LPS exposure of alveolar macrophages also results in the generation of ceramide. Because ceramide exposure induces apoptosis in other cell types and the PI 3-kinase pathway is known to inhibit apoptosis, we determined the relationship between LPS-induced ceramide and PI 3-kinase activation in alveolar macrophages. We found that ceramide exposure activated PI 3-kinase and Akt. When we blocked LPS-induced ceramide with the inhibitor D609, we blocked LPS-induced PI 3-kinase and Akt activation. Evaluating cell survival after ceramide or LPS exposure, we found that blocking PI 3-kinase induced a significant increase in cell death. Because these effects of PI 3-kinase inhibition were more pronounced in ceramide- vs LPS-treated alveolar macrophages, we also evaluated NF-kappaB, which has also been linked to cell survival. We found that LPS, to a greater degree than ceramide, induced NF-kappaB translocation to the nucleus. As a composite, these studies suggest that the effects of ceramide exposure in alveolar macrophages may be very different from the effects described for other cell types. We believe that LPS induction of ceramide results in PI 3-kinase activation and represents a novel effector mechanism that promotes survival of human alveolar macrophages in the setting of pulmonary sepsis.  相似文献   

19.
Laminar shear stress is a key determinant of systemic vascular behavior, including through activation of endothelial nitric oxide synthase (eNOS), but little is known of its role in the glomerulus. We confirmed eNOS expression by glomerular endothelial cells (GEnC) in tissue sections and examined effects of acute exposure (up to 24 h) to physiologically relevant levels of laminar shear stress (10-20 dyn/cm(2)) in conditionally immortalized human GEnC. Laminar shear stress caused an orientation of GEnC and stress fibers parallel to the direction of flow and induced Akt and eNOS phosphorylation along with NO production. Inhibition of the phophatidylinositol (PI)3-kinase/Akt pathway attenuated laminar shear stress-induced eNOS phosphorylation and NO production. Laminar shear stress of 10 dyn/cm(2) had a dramatic effect on GEnC permeability, reversibly decreasing the electrical resistance across GEnC monolayers. Finally, the laminar shear stress-induced reduction in electrical resistance was attenuated by the NOS inhibitors l-N(G)-monomethyl arginine (l-NMMA) and l-N(G)-nitroarginine methyl ester (l-NAME) and also by inhibition of the PI3-kinase/Akt pathway. Hence we have shown for GEnC in vitro that acute permeability responses to laminar shear stress are dependent on NO, produced via activation of the PI3-kinase/Akt pathway and increased eNOS phosphorylation. These results suggest the importance of laminar shear stress and NO in regulating the contribution of GEnC to the permeability properties of the glomerular capillary wall.  相似文献   

20.
Phosphatidylinositol 3-kinase (PI3-kinase) activates protein kinase B (also known as Akt), which phosphorylates and activates a cyclic nucleotide phosphodiesterase 3B. Increases in cyclic nucleotide concentrations inhibit agonist-induced contraction of vascular smooth muscle. Thus we hypothesized that the PI3-kinase/Akt pathway may regulate vascular smooth muscle tone. In unstimulated, intact bovine carotid artery smooth muscle, the basal phosphorylation of Akt was higher than that in cultured smooth muscle cells. The phosphorylation of Akt decreases in a time-dependent manner when incubated with the PI3-kinase inhibitor, LY-294002. Agonist (serotonin)-, phorbol ester (phorbol 12,13-dibutyrate; PDBu)-, and depolarization (KCl)-induced contractions of vascular smooth muscles were all inhibited in a dose-dependent fashion by LY-294002. However, LY-294002 did not inhibit serotonin- or PDBu-induced increases in myosin light chain phosphorylation or total O(2) consumption, suggesting that inhibition of contraction was not mediated by reversal or inhibition of the pathways that lead to smooth muscle activation and contraction. Treatment of vascular smooth muscle with LY-294002 increased the activity of cAMP-dependent protein kinase and increased the phosphorylation of the cAMP-dependent protein kinase substrate heat shock protein 20 (HSP20). These data suggest that activation of the PI3-kinase/Akt pathway in unstimulated smooth muscle may modulate vascular smooth muscle tone (allow agonist-induced contraction) through inhibition of the cyclic nucleotide/HSP20 pathway and suggest that cyclic nucleotide-dependent inhibition of contraction is dissociated from the myosin light chain contractile regulatory pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号