首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Recent studies have revealed that the stretch reflex responses of both ankle flexor and extensor muscles are coaugmented in the early stance phase of human walking, suggesting that these coaugmented reflex responses contribute to secure foot stabilization around the heel strike. To test whether the reflex responses mediated by the stretch reflex pathway are actually induced in both the ankle flexor and extensor muscles when the supportive surface is suddenly destabilized, we investigated the electromyographic (EMG) responses induced after a sudden drop of the supportive surface at the early stance phase of human walking. While subjects walked on a walkway, the specially designed movable supportive surface was unexpectedly dropped 10 mm during the early stance phase. The results showed that short-latency reflex EMG responses after the impact of the drop (<50 ms) were consistently observed in both the ankle flexor and extensor muscles in the perturbed leg. Of particular interest was that a distinct response appeared in the tibialis anterior muscle, although this muscle showed little background EMG activity during the stance phase. These results indicated that the reflex activities in the ankle muscles certainly acted when the supportive surface was unexpectedly destabilized just after the heel strike during walking. These reflex responses were most probably mediated by the facilitated stretch reflex pathways of the ankle muscles at the early stance phase and were suggested to be relevant to secure stabilization around the ankle joint during human walking.  相似文献   

2.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

3.
Summary In locusts (Locusta migratoria) walking on a treadwheel, afferents of tarsal hair sensilla were stimulated via chronically implanted hook electrodes (Fig. 1). Stimuli applied to the middle leg tarsus elicited avoidance reflexes (Fig. 2). In quiescent animals, the leg was lifted off the ground and the femur adducted. In walking locusts, the response was phase-dependent. During the stance phase, no reaction was observed except occasional, premature triggering of swing movements; stimuli applied near the end of the swing phase were able to elicit an additional, short leg protraction.Central nervous correlates of phase-dependent reflex modulation were observed by recording intracellularly from motoneuron somata in walking animals. As a rule, motoneurons recruited during the swing phase showed excitatory stimulus-related responses around the end of the swing movement, correlated to the triggering of additional leg protractions (Figs. 3, 4, 5). Motoneurons active during the stance phase were often inhibited by tarsal stimulation, some showed only weak responses (Figs. 8, 9, 10). Common inhibitory motoneuron 1 was excited by tarsal stimulation during all phases of the leg movement (Figs. 6, 7). In one type of flexor tibiae motoneuron, a complex response pattern was observed, involving the inversion of stimulus-related synaptic potentials from excitatory, recorded during rest, to inhibitory, observed during long-lasting stance phases (Figs. 11, 12).The results demonstrate how reflex modulation is represented on the level of synaptic input to motoneurons. They further suggest independent gain control in parallel, antagonistic pathways converging onto the same motoneuron as a mechanism for reflex reversal during locomotion.Abbreviations CI 1 common inhibitory motoneuron (1) - EMG electromyogram - Feti fast extensor muscle of the tibia  相似文献   

4.
This article describes basic parameters characterizing walking of the stick insect Aretaon asperrimus to allow a comparative approach with other insects studied. As in many other animals, geometrical parameters such as step amplitude and leg extreme positions do not vary with walking velocity. However, the relation between swing duration and stance duration is quite constant, in contrast to most insects studied. Therefore, velocity profiles during swing vary with walking velocity whereas time course of leg trajectories and leg angle trajectories are independent of walking velocity. Nevertheless, A. asperrimus does not show a classical tripod gait, but performs a metachronal, or tetrapod, gait, showing phase values differing from 0.5 between ipsilateral neighbouring legs. As in Carausius morosus, the detailed shape of the swing trajectory may depend on the form of the substrate. Effects describing coordinating influences between legs have been found that prevent the start of a swing as long as the posterior leg performs a swing. Further, the treading on tarsus reflex can be observed in Aretaon. No hint to the existence of a targeting influence has been found. Control of rearward walking is easiest interpreted by maintaining the basic rules but an anterior-posterior reversal of the information flow.  相似文献   

5.
It is believed that force feedback can modulate lower extremity extensor activity during gait. The purpose of this research was to determine the role of limb loading on knee extensor excitability during the late stance/early swing phase of gait in persons post-stroke. Ten subjects with chronic hemiparesis post-stroke participated in (1) seated isolated quadriceps reflex testing with ankle loads of 0–0.4N m/kg and (2) gait analysis on a treadmill with 0%, 20% or 40% body weight support. Muscle reflex responses were recorded from vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during seated testing. Knee kinematics and quadriceps activity during late stance/early swing phase of gait were compared across loading conditions. Although isolated loading of the ankle plantarflexors at 0.2 N m/kg reduced VM prolonged response (p = 0.04), loading did not alter any other measure of quadriceps excitability (all p > 0.08). During gait, the use of BWS did not influence knee kinematics (p = 0.18) or muscle activity (all p > 0.17) during late stance/early swing phase. This information suggests that load sensed at the ankle has minimal effect on the ipsilateral quadriceps of individuals post-stroke during late stance. It appears that adjusting limb loading during rehabilitation may not be an effective tool to address stiff-knee gait following stroke.  相似文献   

6.

The effect of transcutaneous electrical spinal cord stimulation on the kinematic parameters of movement of the ipsilateral and contralateral legs in healthy subjects during treadmill walking at speeds of 1.5 to 1.7 km/h has been studied. The stimulation electrodes were placed 2.5 cm lateral from the right and left sides of the spinal midline at L1 and T11 levels. During the stance phase, stimulation was administered at L1 level at a frequency of 15 Hz; during the swing phase the stimuli was delivered to T11 at a frequency of 30 Hz, followed by alternating stimulation at L1 and T11. The stimulation during the swing phase (T11) was more effective than that during the stance phase (L1); the most impressive changes in kinematic parameters were observed when combined delivery of stimulations to L1 and T11 was performed. With unilateral spinal stimulation, the amplitude of the angles in the hip, knee and/or ankle joints, the length of the transfer, and the height of the leg elevation increased in the ipsilateral leg. Similar but less pronounced changes were observed in the contralateral leg. A 10% increase in the duration of stimulation in the swing phase caused a change in the kinematic stepping parameters both in ipsilateral and contralateral legs. The maximum effect was observed when bilateral alternating stimulation was used. These data show that phasic transcutaneous electrical spinal cord stimulation, using a wide range of natural walking speeds, can be applied to control kinematic movement parameters.

  相似文献   

7.
A simple spring mechanics model can capture the dynamics of the center of mass (CoM) during human walking, which is coordinated by multiple joints. This simple spring model, however, only describes the CoM during the stance phase, and the mechanics involved in the bipedality of the human gait are limited. In this study, a bipedal spring walking model was proposed to demonstrate the dynamics of bipedal walking, including swing dynamics followed by the step-to-step transition. The model consists of two springs with different stiffnesses and rest lengths representing the stance leg and swing leg. One end of each spring has a foot mass, and the other end is attached to the body mass. To induce a forward swing that matches the gait phase, a torsional hip joint spring was introduced at each leg. To reflect the active knee flexion for foot clearance, the rest length of the swing leg was set shorter than that of the stance leg, generating a discrete elastic restoring force. The number of model parameters was reduced by introducing dependencies among stiffness parameters. The proposed model generates periodic gaits with dynamics-driven step-to-step transitions and realistic swing dynamics. While preserving the mimicry of the CoM and ground reaction force (GRF) data at various gait speeds, the proposed model emulated the kinematics of the swing leg. This result implies that the dynamics of human walking generated by the actuations of multiple body segments is describable by a simple spring mechanics.  相似文献   

8.
Participants with ankle instability demonstrate more foot inversion during the stance phase of gait than able-bodied subjects. Invertor excitation, coupled with evertor inhibition may contribute to this potentially injurious position. The purpose of this experiment was to examine evertor/invertor muscle activation and foot COP trajectory during walking in participants with functional ankle instability (FI). Twelve subjects were identified with FI and matched to healthy controls. Tibialis anterior (TA) and peroneus longus (PL) electromyography (EMG), as well as COP, were recorded during walking. Functional analyses were used to detect differences between FI and control subjects with respect to normalized EMG and COP trajectory during walking. Relative to matched controls, COP trajectory was more laterally deviated in the FI group from 20% to 90% of the stance phase. TA activation was greater in the FI group from 15% to 30% and 45% to 70% of stance. PL activation was greater in the FI group at initial heel contact and toe off and trended lower from 20% to 40% of stance in the FI group. Altered motor strategies appear to contribute to COP deviations in FI participants and may increase the susceptibility to repeated ankle inversion injury.  相似文献   

9.
Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work.  相似文献   

10.
During human walking, plantar flexor activation in late stance helps to generate a stable and economical gait pattern. Because plantar flexor activation is highly mediated by proprioceptive feedback, the nervous system must modulate reflex pathways to meet the mechanical requirements of gait. The purpose of this study was to quantify ankle joint mechanical output of the plantar flexor stretch reflex response during a novel unexpected gait perturbation. We used a robotic ankle exoskeleton to mechanically amplify the ankle torque output resulting from soleus muscle activation. We recorded lower-body kinematics, ground reaction forces, and electromyography during steady-state walking and during randomly perturbed steps when the exoskeleton assistance was unexpectedly turned off. We also measured soleus Hoffmann- (H-) reflexes at late stance during the two conditions. Subjects reacted to the unexpectedly decreased exoskeleton assistance by greatly increasing soleus muscle activity about 60 ms after ankle angle deviated from the control condition (p<0.001). There were large differences in ankle kinematic and electromyography patterns for the perturbed and control steps, but the total ankle moment was almost identical for the two conditions (p=0.13). The ratio of soleus H-reflex amplitude to background electromyography was not significantly different between the two conditions (p=0.4). This is the first study to show that the nervous system chooses reflex responses during human walking such that invariant ankle joint moment patterns are maintained during perturbations. Our findings are particularly useful for the development of neuromusculoskeletal computer simulations of human walking that need to adjust reflex gains appropriately for biomechanical analyses.  相似文献   

11.
A rapid plantar flexion perturbation applied to the ankle during the stance phase of the step cycle during human walking unloads the ankle extensors and produces a marked decline in the soleus EMG. This demonstrates that sensory activity contributes importantly to the enhancement of the ankle extensor muscle activation during human walking. On average, the EMG begins to decline approximately 52 ms after the perturbation. In contrast, a rapid dorsi flex ion perturbation produces a group Ia mediated short-latency stretch reflex burst with an onset latency of approximately 36 ms. The transmission of sensory traffic from the foot and ankle was suppressed in 10 subjects by an anaesthetic nerve block produced with local injections of lidocaine hydrochloride. The anaesthetic block had no effect on the stance phase soleus EMG, the latencies of the EMG responses, or the magnitude of the EMG decline following the plantar flexion perturbation. Therefore, it is more likely that proprioceptive afferents, rather than cutaneous afferents, contribute to the background soleus EMG during the late stance phase of the step cycle. The large difference in onset latencies between the short-latency reflex and unload responses suggests that the largest of the active group Ia afferents might not contribute strongly to the background soleus EMG, although it remains to be determined which of the proprioceptive pathways provide the more important contributions.  相似文献   

12.
The modulation of walking speed results in adaptations to the lower limbs which can be quantified using mechanical work. A 6 degree-of-freedom (DOF) power analysis, which includes additional translations as compared to the 3 DOF (all rotational) approach, is a comprehensive approach for quantifying lower limb work during gait. The purpose of this study was to quantify the speed-related 6 DOF joint and distal foot work adaptations of all the lower extremity limb constituents (hip, knee, ankle, and distal foot) in healthy individuals. Relative constituent 6 DOF work, the amount of constituent work relative to absolute limb work, was calculated during the stance and swing phases of gait. Eight unimpaired adults walked on an instrumented split-belt treadmill at slow, moderate, and typical walking speeds (0.4, 0.6, and 0.8 statures/s, respectively). Using motion capture and force data, 6 DOF powers were calculated for each constituent. Contrary to previously published results, 6 DOF positive relative ankle work and negative relative distal foot work increased significantly with increased speed during stance phase (p < 0.05). Similar to previous rotational DOF results in the sagittal plane, negative relative ankle work decreased significantly with increased speed during stance phase (p < 0.05). Scientifically, these findings provide new insight into how healthy individuals adapt to increased walking speed and suggest limitations of the rotational DOF approach for quantifying limb work. Clinically, the data presented here for unimpaired limbs can be used to compare with speed-matched data from limbs with impairments.  相似文献   

13.
The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking.  相似文献   

14.
Energy storage and return (ESAR) foot-ankle prostheses have been developed in an effort to improve gait performance in lower-limb amputees. However, little is known about their effectiveness in providing the body segment mechanical energetics normally provided by the ankle muscles. The objective of this theoretical study was to use muscle-actuated forward dynamics simulations of unilateral transtibial amputee and non-amputee walking to identify the contributions of ESAR prostheses to trunk support, forward propulsion and leg swing initiation and how individual muscles must compensate in order to produce a normal, symmetric gait pattern. The simulation analysis revealed the ESAR prosthesis provided the necessary trunk support, but it could not provide the net trunk forward propulsion normally provided by the plantar flexors and leg swing initiation normally provided by the biarticular gastrocnemius. To compensate, the residual leg gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in early stance and late stance into pre-swing, respectively, while the residual iliopsoas delivered increased energy to the leg in pre- and early swing to help initiate swing. In the intact leg, the soleus, gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in the first half of stance, while the iliopsoas increased the leg energy it delivered in pre- and early swing. Thus, the energy stored and released by the ESAR prosthesis combined with these muscle compensations was able to produce a normal, symmetric gait pattern, although various neuromuscular and musculoskeletal constraints may make such a pattern non-optimal.  相似文献   

15.
Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed.  相似文献   

16.
Recent studies have suggested that complex muscle activity during walking may be controlled using a reduced neural control strategy organized around the co-excitation of multiple muscles, or modules. Previous computer simulation studies have shown that five modules satisfy the sagittal-plane biomechanical sub-tasks of 2D walking. The present study shows that a sixth module, which contributes primarily to mediolateral balance control and contralateral leg swing, is needed to satisfy the additional non-sagittal plane demands of 3D walking. Body support was provided by Module 1 (hip and knee extensors, hip abductors) in early stance and Module 2 (plantarflexors) in late stance. In early stance, forward propulsion was provided by Module 4 (hamstrings), but net braking occurred due to Modules 1 and 2. Forward propulsion was provided by Module 2 in late stance. Module 1 accelerated the body medially throughout stance, dominating the lateral acceleration in early stance provided by Modules 4 and 6 (adductor magnus) and in late stance by Module 2, except near toe-off. Modules 3 (ankle dorsiflexors, rectus femoris) and 5 (hip flexors and adductors except adductor magnus) accelerated the ipsilateral leg forward in early swing whereas Module 4 decelerated the ipsilateral leg prior to heel-strike. Finally, Modules 1, 4 and 6 accelerated the contralateral leg forward prior to and during contralateral swing. Since the modules were based on experimentally measured muscle activity, these results provide further evidence that a simple neural control strategy involving muscle activation modules organized around task-specific biomechanical functions may be used to control complex human movements.  相似文献   

17.
To examine how walking patterns are adapted to changes in load, we recorded leg movements and muscle activities when cockroaches (Periplaneta americana) walked upright and on an inverted surface. Animals were videotaped to measure the hindleg femoro-tibial joint angle while myograms were taken from the tibial extensor and flexor muscles. The joint is rapidly flexed during swing and extended in stance in upright and inverted walking. When inverted, however, swing is shorter in duration and the joint traverses a range of angles further in extension. In slow upright walking, slow flexor motoneurons fire during swing and the slow extensor in stance, although a period of co-contraction occurs early in stance. In inverted walking, patterns of muscle activities are altered. Fast flexor motoneurons fire both in the swing phase and early in stance to support the body by pulling the animal toward the substrate. Extensor firing occurs late in stance to propel the animal forward. These findings are discussed within the context of a model in which stance is divided into an early support and subsequent propulsion phase. We also discuss how these changes in use of the hindleg may represent adaptations to the reversal of the effects of gravity.  相似文献   

18.
19.
Clinical locomotor research seeks to facilitate adaptation or retention of new walking patterns by providing feedback. Within a split-belt treadmill paradigm, sagittal plane feedback improves adaptation but does not affect retention. Representation of error in this manner is cognitively demanding. However, it is unknown in this paradigm how frontal plane feedback, which may utilize a unique learning process, impacts locomotor adaptation. Frontal plane movement feedback has been shown to impact retention of novel running mechanics but has yet to be evaluated in gait conditions widely applicable within neurorehabilitation, such as walking. The purpose of this study was to investigate the effects of frontal plane mirror feedback on gait adaptation and retention during split-belt treadmill walking. Forty healthy young adults were divided into two groups: one group received mirror feedback during the first split-belt exposure and the other received no mirror feedback. Individuals in the mirror feedback group were asked to look at their legs in the mirror, but no further instructions were given. Individuals with mirror feedback displayed more symmetric stance time during the first strides of adaptation and maintained this pattern into the second split-belt exposure when no feedback was provided. Individuals with mirror feedback also demonstrated more symmetric double support time upon returning to normal walking. Lastly, the mirror feedback also allowed individuals to walk with smaller gait variability during the final steps of both split-belt exposures. Overall, mirror feedback allowed individuals to reduce their stance time asymmetry and led to a more consistent adapted pattern, suggesting this type of feedback may have utility in gait training that targets symmetry and consistency in movement.  相似文献   

20.
The purpose of this study was to determine the contribution of individual ankle muscles to the net ankle power and to examine each muscle’s role in propulsion or support of the body during normal, self-selected-speed walking. An EMG-to-force processing (EFP) model was developed which scaled muscle tendon unit force output to gait EMG, with that muscle’s power output being the product of muscle force and contraction velocity. Net EFP power was determined by summing individual ankle muscle power. Net ankle power was also calculated for these subjects via inverse dynamics. Closeness of fit of the power curves of the two methods was used to validate the model. The curves were highly correlated (r2 = .91), thus the model was deconstructed to analyze the power contribution and role of each ankle muscle during normal gait. Key findings were that the plantar flexors control tibial rotation in single support, and act to propel the entire limb into swing phase. The dorsiflexors provide positive power for swing phase foot clearance, negative power to control early stance phase foot placement, and a second positive power burst to actively advance the tibia in the transition from double to single support. Co-contraction of agonists and antagonists was limited to only a small percentage of the gait cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号