首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Backgrounds and aims

Interactions between plants can be both positive and negative, denoting facilitation and competition. Although facilitative effects of having legume neighbours (focus on yield productivity) are well studied, a better mechanistic understanding of how legumes interact with non-legumes in terms of root distribution is needed. We tested the effects of neighbour identity, its spatial location, as well as the effects of plant order of arrival on above and belowground traits and root distribution.

Methods

We performed a rhizotron experiment (4 weeks duration) in which we grew maize alone, with only a legume, only another grass, or with both species and tracked roots of the plant species using green and red fluorescent markers.

Results

Maize grew differently when it had a neighbour, with reduced development when growing with wheat compared to alone. Growing with a legume generally equated to the same outcome as not having a neighbour. Roots grew towards the legume species and away from the wheat. Order of arrival affected aboveground traits to a certain extent, but its effects on maize roots were dependent on spatial location.

Conclusions

Our study provides evidence of facilitation, showing the importance of the identity of the neighbours, together with their spatial location, and how order of arrival can modulate the outcome of these initial interactions.
  相似文献   

2.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

3.

Background

The heme-protein interactions are essential for various biological processes such as electron transfer, catalysis, signal transduction and the control of gene expression. The knowledge of heme binding residues can provide crucial clues to understand these activities and aid in functional annotation, however, insufficient work has been done on the research of heme binding residues from protein sequence information.

Methods

We propose a sequence-based approach for accurate prediction of heme binding residues by a novel integrative sequence profile coupling position specific scoring matrices with heme specific physicochemical properties. In order to select the informative physicochemical properties, we design an intuitive feature selection scheme by combining a greedy strategy with correlation analysis.

Results

Our integrative sequence profile approach for prediction of heme binding residues outperforms the conventional methods using amino acid and evolutionary information on the 5-fold cross validation and the independent tests.

Conclusions

The novel feature of an integrative sequence profile achieves good performance using a reduced set of feature vector elements.
  相似文献   

4.

Background

Intrinsically Disordered Proteins (IDPs) lack an ordered three-dimensional structure and are enriched in various biological processes. The Molecular Recognition Features (MoRFs) are functional regions within IDPs that undergo a disorder-to-order transition on binding to a partner protein. Identifying MoRFs in IDPs using computational methods is a challenging task.

Methods

In this study, we introduce hidden Markov model (HMM) profiles to accurately identify the location of MoRFs in disordered protein sequences. Using windowing technique, HMM profiles are utilised to extract features from protein sequences and support vector machines (SVM) are used to calculate a propensity score for each residue. Two different SVM kernels with high noise tolerance are evaluated with a varying window size and the scores of the SVM models are combined to generate the final propensity score to predict MoRF residues. The SVM models are designed to extract maximal information between MoRF residues, its neighboring regions (Flanks) and the remainder of the sequence (Others).

Results

To evaluate the proposed method, its performance was compared to that of other MoRF predictors; MoRFpred and ANCHOR. The results show that the proposed method outperforms these two predictors.

Conclusions

Using HMM profile as a source of feature extraction, the proposed method indicates improvement in predicting MoRFs in disordered protein sequences.
  相似文献   

5.

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
  相似文献   

6.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

7.

Background

Biomedical extraction based on supervised machine learning still faces the problem that a limited labeled dataset does not saturate the learning method. Many supervised learning algorithms for bio-event extraction have been affected by the data sparseness.

Methods

In this study, a semi-supervised method for combining labeled data with large scale of unlabeled data is presented to improve the performance of biomedical event extraction. We propose a set of rich feature vector, including a variety of syntactic features and semantic features, such as N-gram features, walk subsequence features, predicate argument structure (PAS) features, especially some new features derived from a strategy named Event Feature Coupling Generalization (EFCG). The EFCG algorithm can create useful event recognition features by making use of the correlation between two sorts of original features explored from the labeled data, while the correlation is computed with the help of massive amounts of unlabeled data. This introduced EFCG approach aims to solve the data sparse problem caused by limited tagging corpus, and enables the new features to cover much more event related information with better generalization properties.

Results

The effectiveness of our event extraction system is evaluated on the datasets from the BioNLP Shared Task 2011 and PubMed. Experimental results demonstrate the state-of-the-art performance in the fine-grained biomedical information extraction task.

Conclusions

Limited labeled data could be combined with unlabeled data to tackle the data sparseness problem by means of our EFCG approach, and the classified capability of the model was enhanced through establishing a rich feature set by both labeled and unlabeled datasets. So this semi-supervised learning approach could go far towards improving the performance of the event extraction system. To the best of our knowledge, it was the first attempt at combining labeled and unlabeled data for tasks related biomedical event extraction.
  相似文献   

8.

Background

Automatic disease named entity recognition (DNER) is of utmost importance for development of more sophisticated BioNLP tools. However, most conventional CRF based DNER systems rely on well-designed features whose selection is labor intensive and time-consuming. Though most deep learning methods can solve NER problems with little feature engineering, they employ additional CRF layer to capture the correlation information between labels in neighborhoods which makes them much complicated.

Methods

In this paper, we propose a novel multiple label convolutional neural network (MCNN) based disease NER approach. In this approach, instead of the CRF layer, a multiple label strategy (MLS) first introduced by us, is employed. First, the character-level embedding, word-level embedding and lexicon feature embedding are concatenated. Then several convolutional layers are stacked over the concatenated embedding. Finally, MLS strategy is applied to the output layer to capture the correlation information between neighboring labels.

Results

As shown by the experimental results, MCNN can achieve the state-of-the-art performance on both NCBI and CDR corpora.

Conclusions

The proposed MCNN based disease NER method achieves the state-of-the-art performance with little feature engineering. And the experimental results show the MLS strategy’s effectiveness of capturing the correlation information between labels in the neighborhood.
  相似文献   

9.

Background

Similarity search in protein databases is one of the most essential issues in computational proteomics. With the growing number of experimentally resolved protein structures, the focus shifted from sequences to structures. The area of structure similarity forms a big challenge since even no standard definition of optimal structure similarity exists in the field.

Results

We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality modeling of local similarity in the process of feature extraction. SProt’s features are based on spherical spatial neighborhood of amino acids where similarity can be well-defined. On top of the partial local similarities, global measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the search process by an order of magnitude faster.

Conclusions

The proposed method outperforms other methods in classification accuracy on SCOP superfamily and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality of alignment.
  相似文献   

10.

Background

The quantification of the spatial order of biological patterns or mosaics provides useful information as many properties are determined by the spatial distribution of their constituent elements. These are usually characterised by methods based on nearest neighbours distances, by the number of sides of cells, or by angles defined by the adjacent cells.

Methods

A measure of regularity in polygonal mosaics of different kinds in biological systems is proposed. It is based on the condition of eutacticity, expressed in terms of eutactic stars, which is closely related to regularity of polytopes. Thus it constitutes a natural measure of regularity. The proposed measure is tested with numerical and real data. Numerically is tested with a hexagonal lattice that is distorted progressively and with a non-periodic regular tiling. With real data, the distribution of oak trees in forests from three locations in the State of Querétaro, Mexico, and the spiral pattern of florets in a flowering plant are characterised.

Results

The proposed measure performs well and as expected while tested with a numerical experiment, as well as when applied to a known non-periodic tiling of the plane. Concerning real data, the measure is sensitive to the degree of perturbation observed in the distribution of oak trees and detects high regularity in a phyllotactic pattern studied.

Conclusions

The measure here proposed has a clear geometrical meaning, establishing what regularity means, and constitute an advantageous general purposes alternative to analyse spatial distributions, capable to indicate the degree of regularity of a mosaic or an array of points.
  相似文献   

11.

Background

The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications.

Results

We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup.

Conclusion

Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.
  相似文献   

12.

Introduction

Tandem mass spectrometry (MS/MS) has been widely used for identifying metabolites in many areas. However, computationally identifying metabolites from MS/MS data is challenging due to the unknown of fragmentation rules, which determine the precedence of chemical bond dissociation. Although this problem has been tackled by different ways, the lack of computational tools to flexibly represent adjacent structures of chemical bonds is still a long-term bottleneck for studying fragmentation rules.

Objectives

This study aimed to develop computational methods for investigating fragmentation rules by analyzing annotated MS/MS data.

Methods

We implemented a computational platform, MIDAS-G, for investigating fragmentation rules. MIDAS-G processes a metabolite as a simple graph and uses graph grammars to recognize specific chemical bonds and their adjacent structures. We can apply MIDAS-G to investigate fragmentation rules by adjusting bond weights in the scoring model of the metabolite identification tool and comparing metabolite identification performances.

Results

We used MIDAS-G to investigate four bond types on real annotated MS/MS data in experiments. The experimental results matched data collected from wet labs and literature. The effectiveness of MIDAS-G was confirmed.

Conclusion

We developed a computational platform for investigating fragmentation rules of tandem mass spectrometry. This platform is freely available for download.
  相似文献   

13.

Background and Aims

Phosphorus (P) is an essential nutrient for plants but its low availability often necessitates amendments for agronomical issues. Objectives were to determine P spatial distribution and speciation that remain poorly understood in cultivated soils.

Methods

Aquic Argiudoll soil samples developed on a calcareous loam glacial till were collected from experimental plots submitted to contrasting crop rotations and amendments. Micro-X-ray fluorescence (μ-XRF) maps were collected on undisturbed samples. X-ray absorption near edge structure (XANES) spectra were collected on bulk samples and on fractions thereof, and on points of interests selected from μ-XRF maps. Results were compared with chemical analyses and extraction techniques results.

Results

Chemical analyses show variations in total and exchangeable P contents depending on the samples but no significant difference is observed in terms of P distribution and speciation. P distribution is dominated by a low-concentration diffuse background with a minor contribution from minute hot spots. P speciation is dominated by phosphate groups bound to clay-humic complexes. No modification of P distribution and speciation is observed close to roots.

Conclusions

This study evidenced minor effect of cropping and fertilizing practices on P speciation in cultivated soils. Despite analytical challenges, the combined use of μ-XRF and XANES provides relevant information on P speciation in heterogeneous soil media.
  相似文献   

14.

Introduction

Global metabolomics analyses using body fluids provide valuable results for the understanding and prediction of diseases. However, the mechanism of a disease is often tissue-based and it is advantageous to analyze metabolomic changes directly in the tissue. Metabolomics from tissue samples faces many challenges like tissue collection, homogenization, and metabolite extraction.

Objectives

We aimed to establish a metabolite extraction protocol optimized for tissue metabolite quantification by the targeted metabolomics AbsoluteIDQ? p180 Kit (Biocrates). The extraction method should be non-selective, applicable to different kinds and amounts of tissues, monophasic, reproducible, and amenable to high throughput.

Methods

We quantified metabolites in samples of eleven murine tissues after extraction with three solvents (methanol, phosphate buffer, ethanol/phosphate buffer mixture) in two tissue to solvent ratios and analyzed the extraction yield, ionization efficiency, and reproducibility.

Results

We found methanol and ethanol/phosphate buffer to be superior to phosphate buffer in regard to extraction yield, reproducibility, and ionization efficiency for all metabolites measured. Phosphate buffer, however, outperformed both organic solvents for amino acids and biogenic amines but yielded unsatisfactory results for lipids. The observed matrix effects of tissue extracts were smaller or in a similar range compared to those of human plasma.

Conclusion

We provide for each murine tissue type an optimized high-throughput metabolite extraction protocol, which yields the best results for extraction, reproducibility, and quantification of metabolites in the p180 kit. Although the performance of the extraction protocol was monitored by the p180 kit, the protocol can be applicable to other targeted metabolomics assays.
  相似文献   

15.

Background

The biomedical domain is witnessing a rapid growth of the amount of published scientific results, which makes it increasingly difficult to filter the core information. There is a real need for support tools that 'digest' the published results and extract the most important information.

Results

We describe and evaluate an environment supporting the extraction of domain-specific relations, such as protein-protein interactions, from a richly-annotated corpus. We use full, deep-linguistic parsing and manually created, versatile patterns, expressing a large set of syntactic alternations, plus semantic ontology information.

Conclusion

The experiments show that our approach described is capable of delivering high-precision results, while maintaining sufficient levels of recall. The high level of abstraction of the rules used by the system, which are considerably more powerful and versatile than finite-state approaches, allows speedy interactive development and validation.
  相似文献   

16.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

17.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

18.

Introduction

Boiling ethanol extraction is a frequently used method for metabolomics studies of biological samples. However, the stability of several central carbon metabolites, including nucleotide triphosphates, and the influence of the cellular matrix on their degradation have not been addressed.

Objectives

To study how a complex cellular matrix extracted from yeast (Saccharomyces cerevisiae) may affect the degradation profiles of nucleotide triphosphates extracted under boiling ethanol conditions.

Methods

We present a double-labelling LC–MS approach with a 13C-labeled yeast cellular extract as complex surrogate matrix, and 13C15N-labeled nucleotides as internal standards, to study the effect of the yeast matrix on the degradation of nucleotide triphosphates.

Results

While nucleotide triphosphates were degraded to the corresponding diphosphates in pure solutions, degradation was prevented in the presence of the yeast matrix under typical boiling ethanol extraction conditions.

Conclusions

Extraction of biological samples under boiling ethanol extraction conditions that rapidly inactivate enzyme activity are suitable for labile central energy metabolites such as nucleotide triphosphates due to the stabilizing effect of the yeast matrix. The basis of this phenomenon requires further study.

Graphical abstract

  相似文献   

19.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号