首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ProSAAS is a newly discovered protein with a neuroendocrine distribution generally similar to that of prohormone convertase 1 (PC1), a peptide-processing endopeptidase. Several proSAAS-derived peptides were previously identified in the brain and pituitary of the Cpe(fat)/Cpe(fat) mouse based on the accumulation of C-terminally extended peptides due to the absence of enzymatically active carboxypeptidase E, a peptide-processing exopeptidase. In the present study, antisera against different regions of proSAAS were used to develop radioimmunoassays and examine the processing profile of proSAAS in wild type and Cpe(fat)/Cpe(fat) mouse tissues following gel filtration and reverse phase high performance liquid chromatography. In wild type mouse brain and pituitary, the majority of proSAAS is processed into smaller peptides. These proSAAS-derived peptides elute from the reverse-phase column in the same positions as synthetic peptides that correspond to little SAAS, PEN, and big LEN. Mass spectrometry revealed the presence of peptides with the expected molecular masses of little SAAS and big LEN in the fractions containing immunoreactive peptides. The processing of proSAAS is slightly impaired in Cpe(fat)/Cpe(fat) mice, relative to wild-type mice, leading to the accumulation of partially processed peptides. One of these peptides, the C-terminally extended form of PEN, is known to inhibit PC1 activity and this could account for the reduction in enzymatically active PC1 seen in Cpe(fat)/Cpe(fat) mice. The observation that little SAAS and big LEN are the major forms of these peptides produced in mouse brain and pituitary raises the possibility that these peptides function as neurotransmitters or hormones.  相似文献   

2.
ProSAAS is the precursor for some of the most abundant peptides found in mouse brain and other tissues, including peptides named SAAS, PEN, and LEN. Both SAAS and LEN are found in big and little forms due to differential processing. Initial processing of proSAAS is mediated by furin (and/or furin-like enzymes) and carboxypeptidase D, while the smaller forms are generated by secretory granule prohormone convertases and carboxypeptidase E. In mouse hypothalamus, PEN and big LEN colocalize with neuropeptide Y. In the present study, little LEN and SAAS were detected in mouse hypothalamus but not in cell bodies of neuropeptide Y-expressing neurons. PEN and big LEN show substantial colocalization in hypothalamus, but big LEN and little LEN do not. An antiserum to SAAS that detects both big and little forms of this peptide did not show substantial colocalization with PEN or big LEN. To further study this, the AtT-20 cells mouse pituitary corticotrophic cell line was transfected with rat proSAAS and the distribution of peptides examined. As found in mouse hypothalamus, only some of the proSAAS-derived peptides colocalized with each other in AtT-20 cells. The two sites within proSAAS that are known to be efficiently cleaved by furin were altered by site-directed mutagenesis to convert the P4 Arg into Lys; this change converts the sequences from furin consensus sites into prohormone convertase consensus sites. Upon expression of the mutated form of proSAAS in AtT-20 cells, there was significantly more colocalization of proSAAS-derived peptides PEN and SAAS. Taken together, these results indicate that proSAAS is initially cleaved in the Golgi or trans-Golgi network by furin and/or furin-like enzymes and the resulting fragments are sorted into distinct vesicles and further processed by additional enzymes into the mature peptides.  相似文献   

3.
The conversion of inactive precursor proteins into bioactive neuropeptides and peptide hormones involves regulated secretory proteins such as prohormone convertases PC1 and PC2. The neuroendocrine protein 7B2 represents a specific binding protein for PC2, and the protein proSAAS, which interacts with PC1, exhibits certain structural and functional homologies with 7B2. With the intention of better understanding the physiological role of proSAAS and its derived peptides, we investigated its tissue localization using a new radioimmunoassay (RIA) to a C-terminal proSAAS-derived peptide. Immunoreactivity corresponding to this SAAS-derived peptide is mostly localized to the brain and gut. Analysis of the brain distribution of the proSAAS-derived peptides indicates that the hypothalamus and pituitary are the two richest areas, consistent with the previously described high expression of PC1 in these two areas. In order to investigate the cleavage of proSAAS by prohormone convertases, we incubated recombinant His-tagged proSAAS with recombinant mouse proPC2 or furin, separated the cleavage products using high-pressure gel permeation chromatography and analyzed the products by RIA. Our results indicate that either PC2 or furin can accomplish in vitro rapid removal and efficient internal processing of the C-terminal peptide, exposing the inhibitory hexapeptide to possible further digestion by carboxypeptidases. Finally, we also studied proSAAS processing in the brains of wild-type and PC2 null mice and found that proSAAS is efficiently processed in vivo. Whereas the C-terminal peptide is mostly internally cleaved in wild-type mouse brain, it is not processed as efficiently in the brain of PC2 null mice, suggesting that PC2 is partially responsible for this cleavage in vivo.  相似文献   

4.
ProSAAS (encoded by mouse gene Pcsk1n) is a recently described neuroendocrine secretory pathway protein that is cleaved into smaller peptides that may function in cell-cell signalling. ProSAAS and its processing intermediates are also potent inhibitors of prohormone convertase 1 (PC1), which is encoded by mouse gene Pcsk1. In order to gain insight into the function of proSAAS, we have examined the distribution of several proSAAS-derived peptides and PC1 by immunohistochemistry throughout mouse development. The distribution patterns of both SAAS and PC1 are broad from E9 to E11, with some enrichment in neural tube-derived tissues. By E15, the expression of SAAS is largely restricted to neuroendocrine tissues known to produce bioactive peptides. In general, the expression pattern of PC1 overlaps with that of SAAS and other proSAAS-derived peptides, consistent with the hypothesis that proSAAS functions as an endogenous PC1 inhibitor.  相似文献   

5.
The biosynthesis of most neuropeptides and peptide hormones requires a carboxypeptidase such as carboxypeptidase E, which is inactive in Cpe(fat/fat) mice due to a naturally occurring point mutation. To assess the role of carboxypeptidase E in the processing of peptides in the prefrontal cortex, we used a quantitative peptidomics approach to examine the relative levels of peptides in Cpe(fat/fat) versus wild-type mice. Peptides representing internal fragments of prohormones and other secretory pathway proteins were decreased two- to 10-fold in the Cpe(fat/fat) mouse prefrontal cortex compared with wild-type tissue. Degradation fragments of cytosolic proteins showed no major differences between Cpe(fat/fat) and wild-type mice. Based on this observation, a search strategy for neuropeptides was performed by screening for peptides that decreased in the Cpe(fat/fat) mouse. Altogether, 32 peptides were identified, of which seven have not been previously reported. The novel peptides include fragments of VGF, procholecystokinin and prohormone convertase 2. Interestingly, several of the peptides do not fit with the consensus sites for prohormone convertase 1 and 2, raising the possibility that another endopeptidase is involved with their biosynthesis. Taken together, these findings support the proposal that carboxypeptidase E is the major, but not the only, peptide-processing carboxypeptidase and also demonstrate the feasibility of searching for novel peptides based on their decrease in Cpe(fat/fat) mice.  相似文献   

6.
A major paradigm in the field of obesity research is the existence of an adipose tissue-brain endocrine axis for the regulation of body weight. Leptin, the peptide mediator of this axis, is secreted by adipose cells. It lowers food intake and body weight by acting in the hypothalamus, a region expressing an abundance of leptin receptors and a variety of neuropeptides that influence food intake and energy balance. Among the most promising candidates for leptin-sensitive cells in the hypothalamus are arcuate nucleus neurons that co-express the anabolic neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), and those that express proopiomelanocortin (POMC), the precursor of the catabolic peptide, alphaMSH. These cell types contain mRNA encoding leptin receptors and show changes in neuropeptide gene expression in response to changes in food intake and circulating leptin levels. Decreased leptin signaling in the arcuate nucleus is hypothesized to increase the expression of NPY and AGRP. Levels of leptin receptor mRNA and leptin binding are increased in the arcuate nucleus during fasting, principally in NPY/AGRP neurons. These findings suggest that changes in leptin receptor expression in the arcuate nucleus are inversely associated with changes in leptin signaling, and that the arcuate nucleus is an important target of leptin action in the brain.  相似文献   

7.
It has recently been suggested that gut-derived PYY(3-36) may be involved in the central mediation of post-prandial satiety signals. We have examined the acute effects of peripherally administered PYY(3-36) on food intake and hypothalamic gene expression of neuropeptides in mice. A single intraperitoneal injection of PYY(3-36) to mice that had been fasted for 24h resulted in a highly significant reduction in food intake at 6 and 24h post-injection but not at 48h. However, in freely fed mice, food intake was unaltered by PYY(3-36) administration. In the arcuate nucleus POMC mRNA expression was significantly elevated at 6h and remained elevated at 24h following PYY(3-36) injection. By contrast NPY mRNA expression in the arcuate nucleus was suppressed at 6h but not at 24h post-injection. In the lateral hypothalamus there were no differences in MCH mRNA expression at either time point. In conclusion, peripherally administered PYY(3-36) has a suppressive effect on food intake that is more prominent in recently fasted mice and lasts up to 24 h. This is associated with a short-lived suppression of NPY mRNA, a longer lasting increase in POMC mRNA but no change in MCH mRNA expression.  相似文献   

8.
Mice deficient in neurogenin 3 (Ngn3) fail to generate pancreatic endocrine cells and intestinal endocrine cells. Hypothalamic neuropeptides implicated in the control of energy homeostasis might also be affected in Ngn3 homozygous null mutant mice. We investigated the expression of two prominent orexigenic neuropeptides, neuropeptide Y (NPY) and agouti-related protein (AgRP), in the hypothalamic arcuate nucleus of newborn wild-type and Ngn3 null mutant mice. Immunohistochemical analysis demonstrated that, in Ngn3 null mutants, the number of NPY-immunoreactive neurons and nerve fibers was markedly increased in the arcuate nucleus, and the nerve fibers were widely distributed in the hypothalamic area, including the paraventricular and dorsomedial nuclei. Little increase of AgRP immunoreactivity was detected in the arcuate nucleus of mutant mice. In situ hybridization analysis confirmed the increased population of the NPY neurons in the arcuate nucleus of the mutants. The NPY mRNA level, as estimated by laser capture microdissection and real-time quantitative polymerase chain reaction, was 371% higher in Ngn3 null mutants than in wild-type mice. AgRP mRNA levels did not differ significantly between the null mutants and wild-type mice. Thus, up-regulation of the hypothalamic NPY system is probably a feature characteristic of Ngn3 null mice.  相似文献   

9.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

10.
Carboxypeptidase E is a major enzyme in the biosynthesis of numerous neuroendocrine peptides. Previously, we developed a technique for the isolation of neuropeptide-processing intermediates from mice that lack carboxypeptidase E activity (Cpe fat/fat mice) due to a naturally occurring point mutation. In the present study, we used a differential labeling procedure with stable isotopic tags and mass spectrometry to quantitate the relative changes in a number of hypothalamic peptides in Cpe fat/fat mice in two different paradigms that each cause an approximately 10% decrease in body mass. One paradigm involved a 2-day fast under normal sedentary conditions (i.e. standard mouse cages); the other involved giving mice access to an exercise wheel for 4 weeks with free access to food. Approximately 50 peptides were detected in both studies, and over 80 peptides were detected in at least one of the two studies. Twenty-eight peptides were increased >50% by food deprivation, and some of these were increased by 2- to 3-fold. In contrast, only three peptides were increased >50% in the group with exercise wheels, and many peptides showed a slight 15-30% decrease upon exercise. Approximately one-half of the peptides detected in both studies were identified by tandem mass spectrometry. Peptides found to be elevated by food deprivation but not exercise included a number of fragments of proenkephalin, prothyrotropin-releasing hormone, secretogranin II, chromogranin B, and pro-SAAS. Taken together, the differential regulation of these peptides in the two paradigms suggests that the regulation is not due to the lower body weight but to the manner in which the paradigms achieved this lower body weight.  相似文献   

11.
Prior data demonstrated differential roles for cholecystokinin (CCK)1 receptors in maintaining energy balance in rats and mice. CCK1 receptor deficiency results in hyperphagia and obesity of Otsuka Long-Evans Tokushima Fatty (OLETF) rats but not in mice. To ascertain the role of CCK1 receptors in high-fat-diet (HFD)-induced obesity, we compared alterations in food intake, body weight, fat mass, plasma glucose, and leptin levels, and patterns of hypothalamic gene expression in OLETF rats and mice lacking CCK1 receptors in response to a 10-wk exposure to HFD. Compared with Long-Evans Tokushima Otsuka (LETO) control rats, OLETF rats on HFD had sustained overconsumption over the 10-wk period. High fat feeding resulted in greater increases in body weight and plasma leptin levels in OLETF than in LETO rats. In situ hybridization determinations revealed that, while HFD reduced neuropeptide Y (NPY) mRNA expression in both the arcuate nucleus (Arc) and the dorsomedial hypothalamus (DMH) of LETO rats, HFD resulted in decreased NPY expression in the Arc but not in the DMH of OLETF rats. In contrast to these results in OLETF rats, HFD increased food intake and induced obesity to an equal degree in both wild-type and CCK1 receptor(-/-) mice. NPY gene expression was decreased in the Arc in response to HFD, but was not detectable in the DMH in both wild-type and CCK1 receptor(-/-) mice. Together, these data provide further evidence for differential roles of CCK1 receptors in the controls of food intake and body weight in rats and mice.  相似文献   

12.
Orexigenic neuropeptides NPY and AgRP play major roles in feeding and are closely related to obesity and diabetic metabolic syndrome. This study explored the inhibitory effect of rutecarpine on feeding and obesity in high-fat-diet-induced (C57BL/6) and leptin-deficient (ob/ob) obese mice. Both mice strains developed obesity, but the obesity was inhibited by the reduced food intake resulting from rutecarpine treatment (0.01%, < 0.01). Blood cholesterol, non-fasting glucose, insulin, and leptin levels were reduced, compared with the control group. Rutecarpine inhibited the expression of NPY and AgRP in the arcuate nucleus (ARC) of the hypothalamus and suppressed the expression of both neuropeptides in N29-4 neuronal cells. These results indicate that rutecarpine ameliorates obesity by inhibiting food intake, which involves inhibited expression of the orexigenic neuropeptides NPY and AgRP.  相似文献   

13.
Orexins (forms A and B) belong to a new family of peptides that, as neuropeptide Y (NPY), stimulate food intake when centrally injected. The ob/ob mouse is a well-characterized model of hyperphagia and obesity associated with strong metabolic disturbances and a central dysregulation of peptides involved in the control of feeding. In the present report, we investigated the hypocretin (Hcrt)/orexin (OX) peptide pathway in lean and ob/ob mice. Prepro-Hcrt/OX mRNA expression, measured by in situ hybridization was restricted to the lateral hypothalamus area. It was significantly decreased in ob/ob mice (-18%; p<0.01). When estimated by real time RT-PCR in the whole hypothalamus, this decrease amounted to 65% (p<0.001). Hcrt-1/OX-A peptide concentrations, measured by RIA in microdissected hypothalamic nuclei were high in the lateral hypothalamus (LH) and lower in the arcuate (ARC) and paraventricular nuclei (PVN). In ob/ob mice, OX-A levels were significantly lower than in lean mice in the LH (-34%; p<0.02) and in the PVN (-72%; p<0.005). Acute intracerebroventricular injection of Hcrt-1/OX-A (1-10 nmol) stimulated feeding in lean, but not in ob/ob mice, whereas Hcrt-2/OX-B (1-10 nmol) had the opposite effect. Acute third ventricle (i3vt) injections of Hcrt/OX peptides in ob/ob mice transiently increased their metabolic rate and stimulated lipid substrate utilization. These findings provide direct evidence that Hcrt/OX peptides are down-regulated in the hypothalamus of ob/ob mice, contrary to the NPY system. The present data argues that Hcrt/OX peptides are not primarily responsible for the metabolic syndrome of the ob/ob mice. The diminution in the OX tone might participate in a counterregulatory system necessary to limit the adverse effects of NPY on food intake and body weight.  相似文献   

14.
Cpe(fat/fat) mice are obese, diabetic, and infertile. They have a mutation in carboxypeptidase E (CPE), an enzyme that converts prohormone intermediates to bioactive peptides. The Cpe(fat) mutation leads to rapid degradation of the enzyme. To test whether pro-thyrotropin-releasing hormone (TRH) conversion to TRH involves CPE, processing was examined in the Cpe(fat/fat) mouse. Hypothalamic TRH is depressed by at least 75% compared with wild-type controls. Concentrations of pro-TRH forms are increased in homozygotes. TRH-[Gly(4)-Lys(5)-Arg(6)] and TRH-[Gly(4)-Lys(5)] represent approximately 45% of the total TRH-like immunoreactivity in Cpe(fat/fat) mice; they constitute approximately 1% in controls. Levels of TRH-[Gly(4)] were depressed in homozygotes. Because the hypothalamus contains some TRH, another carboxypeptidase must be responsible for processing. Immunocytochemical studies indicate that TRH neurons contain CPE- and carboxypeptidase D-like immunoreactivity. Recombinant CPE or carboxypeptidase D can convert synthetic TRH-[Gly(4)-Lys(5)] and TRH-[Gly(4)-Lys(5)-Arg(6)] to TRH-[Gly(4)]. When Cpe(fat/fat) mice are exposed to cold, they cannot maintain their body temperatures, and this loss is associated with hypothalamic TRH depletion and reduction in thyroid hormone. These findings demonstrate that the Cpe(fat) mutation can affect not only carboxypeptidase activity but also endoproteolysis. Because Cpe(fat/fat) mice cannot sustain a cold challenge, and because alterations in the hypothalamic-pituitary-thyroid axis can affect metabolism, deficits in pro-TRH processing may contribute to the obese and diabetic phenotype in these mice.  相似文献   

15.
We examined the developmental change of GALP mRNA in male and female rat hypothalamus during postnatal day 1 to 60, using in situ hybridization histochemistry. Neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA in the hypothalamus were also examined because they are important in the regulation of food intake. GALP mRNA was first detected in the arcuate nucleus (ARC) on day 8. GALP mRNA was gradually increased between day 8 and 14 and markedly increased between day 14 and 40, which is the weaning and pubertal period in rats. After day 40, there were no significant differences in GALP mRNA. In contrast to GALP, NPY and POMC mRNAs were detected in the ARC from day 1 and lasted to day 60. There was no sexual dimorphism in GALP, NPY and POMC mRNAs during postnatal development. Next, we examined the effect of the milk deprivation for 24 h on GALP, NPY and POMC mRNA in pups. GALP mRNA did not change by milk deprivation on day 9 and 15, while milk deprivation had a significant effect on NPY and POMC mRNA on day 15. These results suggest that the development of GALP may be associated with developmental changes such as weaning, feeding and maturation of reproductive functions. The regulatory mechanism of GALP mRNA is different from that of the NPY and POMC genes during postnatal development.  相似文献   

16.
We investigated whether ghrelin depletion (by gastrectomy surgery) and/or treatment/replacement with the gastric hormone ghrelin alters the expression of key hypothalamic genes involved in energy balance, in a manner consistent with ghrelin's pro-obesity effects. At 2 weeks after surgery mice were treated with ghrelin (12 nmol/mouse/day, sc) or vehicle for 8 weeks. Gastrectomy had little effect on the expression of these genes, with the exception of NPY mRNA in the arcuate nucleus that was increased. Ghrelin treatment (to gastrectomized and sham mice) increased the mRNA expression of orexigenic peptides NPY and AgRP while decreasing mRNA expression of the anorexigenic peptide POMC. Two weeks gavage treatment with the ghrelin mimetic, MK-0677, to rats increased NPY and POMC mRNA in the arcuate nucleus and MCH mRNA in the lateral hypothalamus. Thus, while predicted pro-obesity ghrelin signalling pathways were activated by ghrelin and ghrelin mimetics, these were largely unaffected by gastrectomy.  相似文献   

17.
Pyrogultamylated arginine-phenylalanineamide peptide (QRFP) is strongly conserved across species and is a member of the family of RFamide-related peptides, with the motif Arg-Phe-NH(2) at the C-terminal end. The precursor peptide for QRFP generates a 26-amino acid peptide (QRFP-26) and a 43-amino acid peptide (QRFP-43), both of which bind to the G protein-coupled receptor, GPR103. Recently, QRFP has been characterized in rats, mice and humans and has been reported to have orexigenic properties. In rodents, prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus, a region implicated in feeding behavior. Increased intake of a high fat diet contributes to increased weight gain and obesity. Therefore, the current experiments investigated the effects of QRFP administration in rats and the effects of a high fat diet on prepro-QRFP mRNA and GPR103 receptor mRNA levels. Intracerebroventricular administration of QRFP-26 (3.0nM, 5.0nM) and QRFP-43 (1.0nM, 3.0nM) dose-dependently increased 1h, 2h, and 4h cumulative intake of high fat (55% fat), but not low fat (10% fat) diet. In Experiment 2, hypothalamic prepro-QRFP mRNA levels and GPR103 receptor mRNA levels were measured in rats fed a high fat or a low fat diet for 21 days. Prepro-QRFP mRNA was significantly increased in the ventromedial nucleus/arcuate nucleus of the hypothalamus of rats fed a high fat diet compared to those fed a low fat diet, while GPR103 mRNA levels were unchanged. These findings suggest that QRFP is a regulator of dietary fat intake and is influenced by the intake of a high fat diet.  相似文献   

18.
Many hyothalamic neuropeptides are involved in the regulation of food intake and body weight. The orexins (OX) which are synthesized in the lateral hypothalamus are among the most recently characterized whereas neuropeptide Y (NPY) belongs to a group of "older" peptides extensively studied for their effects on feeding behavior. Both stimulate food ingestion in rodents. In this experiment, we measured the expressions of these peptides as well as of their receptors (OX1-R and OX2-R, Y1 and Y5) in the hypothalamus of obese hyperphagic and lean Zucker rats by real-time RT-PCR using the TaqMan apparatus. NPY mRNA expression in the obese rats was significantly increased by a factor of 10 (P < 0.002) whereas expressions of the Y1 and Y5 receptors were decreased by 25% (P < 0.01) and 50% (P < 0.002), respectively. Their prepro-orexin mRNA expression was more than twofold decreased (P < 0.01) and expressions of their OX receptors 1 and 2 mRNA were five- and fourfold increased (P < 0.05), respectively. An inverse phenomenon was therefore noted between the two peptides: for NPY, increased levels and downregulation of receptors; and for OX, diminished levels with upregulation of receptors. The reasons for these changes might be linked to the absence of leptin signaling as similar profiles are found in the ob/ob mice. For orexins at least, other factors such as hyperglycemia might be involved. Based on anatomical considerations, a direct effect of NPY or of other brain peptides such as CRH cannot be excluded. We conclude that the diminution in the OX tone might participate in a counterregulatory system necessary to limit the noxious effects of NPY on food intake and body weight.  相似文献   

19.
20.
An expression vector was constructed that placed the cDNA for human neuropeptide Y (NPY) under the control of the mouse metallothionein promoter and was used to transfect the AtT-20 mouse anterior pituitary corticotrope cell line. AtT-20 cells normally process the pro-ACTH/endorphin precursor but do not produce detectable levels of NPY. The resulting AtT-20/NPY cell line (Mt.NPY1a) was used to study the ability of the corticotrope cells to synthesize, process, and secrete the foreign proNPY-related peptide products. The stable cell line created contains approximately 40 copies of proNPY cDNA per cell. NPY mRNA levels and proNPY synthesis were increased at least 35-fold when maximally induced with cadmium; proNPY synthesis was also induced by glucocorticoids. Upon induction the NPY secretion rate was equimolar to that of the endogenous peptides. ProNPY, NPY, and the COOH-terminal peptide produced by this cell line had molecular weight and amino acid-labeling pattern predicted from cDNA sequence data and from previous isolation of NPY-related molecules from NPY-producing cells. The structures of secreted proNPY, NPY, and COOH-terminal peptide, as well as determination of the site of proteolytic cleavage between NPY and the COOH-terminal peptide, were determined by tryptic mapping and Edman degradation of secreted biosynthetically labeled peptide products. The proNPY molecule appears to be processed in the same pathway responsible for cleavage of the endogenous pro-ACTH/endorphin precursor. Secretion of proNPY-derived peptides paralleled secretion of endogenous pro-ACTH/endorphin-derived products, under both basal and stimulated conditions. With induction proNPY expression there is a dose-dependent inhibition of both proNPY and pro-ACTH/endorphin proteolytic processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号