首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accumulation of the beta-amyloid peptide (Abeta) is a primary event in the pathogenesis of Alzheimer's disease (AD). However, the mechanisms by which Abeta mediates neurotoxicity and initiates the degenerative processes of AD are still not clear. Recent evidence shows that voltage-gated K+ channels may be involved in Abeta-induced neurodegenerative processes. In particular, a transient A-type K+ current, with a linear increase in its density with distance from soma to distal dendrites in hippocampal CA1 pyramidal neurons, has been shown to contribute to dendritic membrane excitability. Here, I report that Abeta (1-42) inhibits the dendritic A-type K+ current in hippocampal CA1 pyramidal neurons, and this inhibition causes increases in back-propagating dendritic action potential amplitude and associated Ca2+ influx. These results suggest that the persistent inhibition of the A-type K+ current resulting from deposition of Abeta in dendritic arborization will induce a sustained increase in dendritic Ca2+ influx and lead to loss of Ca2+ homeostasis. This may be a component of the events that cause synaptic failure and initiate neuronal degenerative processes in the hippocampus.  相似文献   

2.
STAM1, a member of the STAM (signal transducing adapter molecule) family, has a unique structure containing a Src homology 3 domain and ITAM (immunoreceptor tyrosine-based activation motif). STAM1 was previously shown to be associated with the Jak2 and Jak3 tyrosine kinases and to be involved in the regulation of intracellular signal transduction mediated by interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Here we generated mice lacking STAM1 by using homologous recombination with embryonic stem cells. STAM1(-/-) mice were morphologically indistinguishable from their littermates at birth. However, growth retardation in the third week after birth was observed for the STAM1(-/-) mice. Unexpectedly, despite the absence of STAM1, hematopoietic cells, including T- and B-lymphocyte and other hematopoietic cell populations, developed normally and responded well to several cytokines, including IL-2 and GM-CSF. However, histological analyses revealed the disappearance of hippocampal CA3 pyramidal neurons in STAM1(-/-) mice. Furthermore, we observed that primary hippocampal neurons derived from STAM1(-/-) mice are vulnerable to cell death induced by excitotoxic amino acids or an NO donor. These data suggest that STAM1 is dispensable for cytokine-mediated signaling in lymphocytes but may be involved in the survival of hippocampal CA3 pyramidal neurons.  相似文献   

3.
Losonczy A  Magee JC 《Neuron》2006,50(2):291-307
Although radial oblique dendrites are a major synaptic input site in CA1 pyramidal neurons, little is known about their integrative properties. We have used multisite two-photon glutamate uncaging to deliver different spatiotemporal input patterns to single branches while simultaneously recording the uncaging-evoked excitatory postsynaptic potentials and local Ca2+ signals. Asynchronous input patterns sum linearly in spite of the spatial clustering and produce Ca2+ signals that are mediated by NMDA receptors (NMDARs). Appropriately timed and sized input patterns ( approximately 20 inputs within approximately 6 ms) produce a supralinear summation due to the initiation of a dendritic spike. The Ca2+ signals associated with synchronous input were larger and mediated by influx through both NMDARs and voltage-gated Ca2+ channels (VGCCs). The oblique spike is a fast Na+ spike whose duration is shaped by the coincident activation of NMDAR, VGCCs, and transient K+ currents. Our results suggest that individual branches can function as single integrative compartments.  相似文献   

4.
The hyperpolarization-activated cation current, I(h), plays an important role in regulating intrinsic neuronal excitability in the brain. In hippocampal pyramidal neurons, I(h) is mediated by h channels comprised primarily of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits, HCN1 and HCN2. Pyramidal neuron h channels within hippocampal area CA1 are remarkably enriched in distal apical dendrites, and this unique distribution pattern is critical for regulating dendritic excitability. We utilized biochemical and immunohistochemical approaches in organotypic slice cultures to explore factors that control h channel localization in dendrites. We found that distal dendritic enrichment of HCN1 is first detectable at postnatal day 13, reaching maximal enrichment by the 3rd postnatal week. Interestingly we found that an intact entorhinal cortex, which projects to distal dendrites of CA1 but not area CA3, is critical for the establishment and maintenance of distal dendritic enrichment of HCN1. Moreover blockade of excitatory neurotransmission using tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione, or 2-aminophosphonovalerate redistributed HCN1 evenly throughout the dendrite without significant changes in protein expression levels. Inhibition of calcium/calmodulin-dependent protein kinase II activity, but not p38 MAPK, also redistributed HCN1 in CA1 pyramidal neurons. We conclude that activation of ionotropic glutamate receptors by excitatory temporoammonic pathway projections from the entorhinal cortex establishes and maintains the distribution pattern of HCN1 in CA1 pyramidal neuron dendrites by activating calcium/calmodulin-dependent protein kinase II-mediated downstream signals.  相似文献   

5.
Mizuseki K  Royer S  Diba K  Buzsáki G 《Hippocampus》2012,22(8):1659-1680
The CA3 and CA1 pyramidal neurons are the major principal cell types of the hippocampus proper. The strongly recurrent collateral system of CA3 cells and the largely parallel-organized CA1 neurons suggest that these regions perform distinct computations. However, a comprehensive comparison between CA1 and CA3 pyramidal cells in terms of firing properties, network dynamics, and behavioral correlations is sparse in the intact animal. We performed large-scale recordings in the dorsal hippocampus of rats to quantify the similarities and differences between CA1 (n > 3,600) and CA3 (n > 2,200) pyramidal cells during sleep and exploration in multiple environments. CA1 and CA3 neurons differed significantly in firing rates, spike burst propensity, spike entrainment by the theta rhythm, and other aspects of spiking dynamics in a brain state-dependent manner. A smaller proportion of CA3 than CA1 cells displayed prominent place fields, but place fields of CA3 neurons were more compact, more stable, and carried more spatial information per spike than those of CA1 pyramidal cells. Several other features of the two cell types were specific to the testing environment. CA3 neurons showed less pronounced phase precession and a weaker position versus spike-phase relationship than CA1 cells. Our findings suggest that these distinct activity dynamics of CA1 and CA3 pyramidal cells support their distinct computational roles.  相似文献   

6.
成年大鼠海马CA1区锥体细胞KATP通道的特性   总被引:3,自引:0,他引:3  
Zhou YJ  Tong ZQ  Gao TM 《生理学报》2001,53(5):344-348
为了解成年大鼠海马CA1区锥体细胞KATP通道的特性,实验采用膜片钳技术的内面向外式记录法,在急性分离的CA1区锥体神经元上,研究了可被胞浆侧ATP所抑制的钾离子单通道的特性,当细胞膜内外两侧的K^ 浓度均为140mmol/L时,通道的电导为63pS,翻转电位为1.71mV,通道呈弱向内向整流性,在负钳制电位时,通道开放时常被短时的关闭所打断,而在正钳制电位时,这种短时程的关闭状态明显少于负钳制电位时,但通道开放概率未见明显的电压依赖性,ATP对通道活动的抑制作用呈浓度依赖性,抑制通道活动50%的ATP浓度为0.1mmol/L.KATP通道的特异性阻断剂tolbutamide(甲糖宁,1mmol/L)可完全阻断通道的活动,而KATP通道开放剂diazoxide(二氮嗪,1mmol/L)则不增强通道的活动。  相似文献   

7.
The activation of small-conductance calcium-activated potassium channels (SK) has a profound effect on membrane excitability. In hippocampal pyramidal neurons, SK channel activation by Ca2+ entry from a preceding burst of action potentials generates the slow afterhyperpolarization (AHP). Stimulation of a number of receptor types suppresses the slow AHP, inhibiting spike frequency adaptation and causing these neurons to fire tonically. Little is known of the gating properties of native SK channels in CNS neurons. By using excised inside-out patches, a small-amplitude channel has been resolved that was half-activated by approximately 0.6 microM Ca2+ in a voltage-independent manner. The channel possessed a slope conductance of 10 pS and exhibited nonstationary gating. These properties are in accord with those of cloned SK channels. The measured Ca2+ sensitivity of hippocampal SK channels suggests that the slow AHP is generated by activation of SK channels from a local rise of intracellular Ca2+.  相似文献   

8.
The passive electrical cable properties of CA3 pyramidal neurons from guinea pig hippocampal slices were investigated by applying current steps and recording the voltage transients from 25 CA3 neurons, using a single intracellular microelectrode and a 3-kHz time-share system. Two independent methods were used for estimating the equivalent electrotonic length of the dendrites, L, and the dendritic to somatic conductance ratio, . The first method is similar to that used by Gorman and Mirolli (1972) and gave an average L of 0.96; the average was 2.44. The second method is derived here for the first time and assumes a finite-length cable with lumped soma. It is an exact solution for L and , using the slopes and intercepts of the first two peeled exponentials. The average L was 0.94; the average was 1.51. The results, using both methods, are in close agreement. The average membrane time constant for all 25 CA3 neurons was 23.6 ms, suggesting a large (23,600 cm2) average membrane resistivity. It is concluded that CA3 neurons are electronically short.This work was supported by Grants NS 11535 and NS 15772 from the National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, U.S. Public Health Service.  相似文献   

9.
Huerta PT  Sun LD  Wilson MA  Tonegawa S 《Neuron》2000,25(2):473-480
In humans the hippocampus is required for episodic memory, which extends into the spatial and temporal domains. Work on the rodent hippocampus has shown that NMDA receptor (NMDAR) -mediated plasticity is essential for spatial memory. Here, we have examined whether hippocampal NMDARs are also needed for temporal memory. We applied trace fear conditioning to knockout mice lacking NMDARs only in hippocampal CA1 pyramidal cells. This paradigm requires temporal processing because the conditional and unconditional stimuli are separated by 30 s (trace). We found that knockout mice failed to memorize this association but were indistinguishable from normal animals when the trace was removed. Thus, NMDARs in CA1 are crucial for the formation of memories that associate events across time.  相似文献   

10.
《Biophysical journal》2022,121(4):644-657
In this work, we highlight an electrophysiological feature often observed in recordings from mouse CA1 pyramidal cells that has so far been ignored by experimentalists and modelers. It consists of a large and dynamic increase in the depolarization baseline (i.e., the minimum value of the membrane potential between successive action potentials during a sustained input) in response to strong somatic current injections. Such an increase can directly affect neurotransmitter release properties and, more generally, the efficacy of synaptic transmission. However, it cannot be explained by any currently available conductance-based computational model. Here we present a model addressing this issue, demonstrating that experimental recordings can be reproduced by assuming that an input current modifies, in a time-dependent manner, the electrical and permeability properties of the neuron membrane by shifting the ionic reversal potentials and channel kinetics. For this reason, we propose that any detailed model of ion channel kinetics for neurons exhibiting this characteristic should be adapted to correctly represent the response and the synaptic integration process during strong and sustained inputs.  相似文献   

11.
To determine the alterations in cellular function which may contribute to the chronic predisposition of neuronal tissue to epileptiform activity, the membrane properties and inhibitory processes of hippocampal CA1 pyramidal cells were investigated using in vitro slices prepared from commissural-kindled rats. No changes were observed in resting membrane potential, input resistance, spike amplitude, and membrane time constant of "kindled" CA1 pyramidal neurons when compared with controls. There were also no differences between control and kindled preparations in the amplitude of recurrent inhibitory postsynaptic potentials (IPSP) and in the duration of inhibition produced by either alvear (Alv) or stratum radiatum (SR) stimulation. Irrespective of group, repetitive stimulation of the Alv reduced the amplitude of the recurrent IPSP but failed to induce seizurelike activity. On the other hand, repetitive stimulation of SR frequently produced a neuronal burst discharge even though the duration and to some extent the amplitude of orthodromic inhibition was increased. On the basis of these data, it may be suggested that chronic changes in CA1 pyramidal cell membrane properties and transient reductions of inhibitory processes do not underlie the enhanced sensitivity of these neurons to seizure activity associated with kindling.  相似文献   

12.
Cai Q  Zhu Z  Li H  Fan X  Jia N  Bai Z  Song L  Li X  Liu J 《Life sciences》2007,80(7):681-689
Prenatal stress is known to cause neuronal loss and oxidative damage in the hippocampus of offspring rats. To further understand the mechanisms, the present study was undertaken to investigate the effects of prenatal stress on the kinetic properties of high-voltage-activated (HVA) Ca(2+) and K(+) channels in freshly isolated hippocampal CA3 pyramidal neurons of offspring rats. Pregnant rats in the prenatal stress group were exposed to restraint stress on days 14-20 of pregnancy three times daily for 45 min. The patch clamp technique was employed to record HVA Ca(2+) and K(+) channel currents. Prenatal stress significantly increased HVA Ca(2+) channel disturbance including the maximal average HVA calcium peak current amplitude (-576.52+/-7.03 pA in control group and -702.05+/-6.82 pA in prenatal stress group, p<0.01), the maximal average HVA Ca(2+) current density (-40.89+/-0.31 pA/pF in control group and -49.44+/-0.37 pA/pF in prenatal stress group, p<0.01), and the maximal average integral current of the HVA Ca(2+) channel (106.81+/-4.20 nA ms in control group and 133.49+/-4.59 nA ms in prenatal stress group, p<0.01). The current-voltage relationship and conductance--voltage relationship of HVA Ca(2+) channels and potassium channels in offspring CA3 neurons were not affected by prenatal stress. These data suggest that exposure of animals to stressful experience during pregnancy can exert effects on calcium ion channels of offspring hippocampal neurons and that the calcium channel disturbance may play a role in prenatal stress-induced neuronal loss and oxidative damage in offspring brain.  相似文献   

13.
A substantial number of human epidemiological data, as well as experimental studies, suggest that adverse maternal stress during gestation is involved in abnormal behavior, mental, and cognition disorder in offspring. To explore the effect of prenatal stress (PS) on hippocampal neurons, in this study, we observed the dendritic field of pyramidal neurons in hippocampal CA3, examined the concentration of glutamate (Glu), and detected the expression of synaptotagmin‐1 (Syt‐1) and N‐methyl‐D ‐aspartate receptor 1 (NR1) in hippocampus of juvenile female offspring rats. Pregnant rats were divided into two groups: control group (CON) and PS group. Female offspring rats used were 30‐day old. The total length of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly shorter in PS than that in CON (p < 0.01). The number of branch points of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly less in PS (p < 0.01). PS offspring had a higher concentration of hippocampal Glu compared with CON (p < 0.05). PS offspring displayed increased expression of Syt‐1 and decreased NR1 in hippocampus compared with CON (p < 0.001 and p < 0.01, respectively). The expression of NR1 in different hippocampus subfields of offspring was significantly decreased in PS than that in CON (p < 0.05‐0.01). This study shows that PS increases the Glu in hippocampus and causes apical dendritic atrophy of pyramidal neurons of hippocampal CA3 in offspring rats. The decline of NR1 in hippocampus may be an adaptive response to the increased Glu. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010  相似文献   

14.
The ability of synapses throughout the dendritic tree to influence neuronal output is crucial for information processing in the brain. Synaptic potentials attenuate dramatically, however, as they propagate along dendrites toward the soma. To examine whether excitatory axospinous synapses on CA1 pyramidal neurons compensate for their distance from the soma to counteract such dendritic filtering, we evaluated axospinous synapse number and receptor expression in three progressively distal regions: proximal and distal stratum radiatum (SR), and stratum lacunosum-moleculare (SLM). We found that the proportion of perforated synapses increases as a function of distance from the soma and that their AMPAR, but not NMDAR, expression is highest in distal SR and lowest in SLM. Computational models of pyramidal neurons derived from these results suggest that they arise from the compartment-specific use of conductance scaling in SR and dendritic spikes in SLM to minimize the influence of distance on synaptic efficacy.  相似文献   

15.
Tsay D  Dudman JT  Siegelbaum SA 《Neuron》2007,56(6):1076-1089
HCN1 hyperpolarization-activated cation channels act as an inhibitory constraint of both spatial learning and synaptic integration and long-term plasticity in the distal dendrites of hippocampal CA1 pyramidal neurons. However, as HCN1 channels provide an excitatory current, the mechanism of their inhibitory action remains unclear. Here we report that HCN1 channels also constrain CA1 distal dendritic Ca2+ spikes, which have been implicated in the induction of LTP at distal excitatory synapses. Our experimental and computational results indicate that HCN1 channels provide both an active shunt conductance that decreases the temporal integration of distal EPSPs and a tonic depolarizing current that increases resting inactivation of T-type and N-type voltage-gated Ca2+ channels, which contribute to the Ca2+ spikes. This dual mechanism may provide a general means by which HCN channels regulate dendritic excitability.  相似文献   

16.
The neural circuit in the hippocampus is important for higher brain functions. Dendrites of CA1 pyramidal neurons mainly receive input from the axons of CA3 pyramidal neurons in this neural circuit. A CA1 pyramidal neuron has a single apical dendrite and multiple basal dendrites. In wild‐type mice, most of CA1 pyramidal neurons extend a single trunk, or alternatively, the apical dendrite bifurcates into two daughter trunks at the stratum radiatum layer. We previously reported the proximal bifurcation phenotype in Sema3A?/?, p35?/?, and CRMP4?/? mice. Cdk5/p35 phosphorylates CRMP2 at Ser522, and inhibition of this phosphorylation suppressed Sema3A‐induced growth cone collapse. In this study, we analyzed the bifurcation points of the apical dendrites of hippocampal CA1 pyramidal neurons in CRMP2KI/KI mice in which the Cdk5/p35‐phosphorylation site Ser522 was mutated into an Ala residue. The proximal bifurcation phenotype was not observed in CRMP2KI/KI mice; however, severe proximal bifurcation of apical dendrites was found in CRMP2KI/KI;CRMP4?/? mice. Cultured hippocampal neurons from CRMP2KI/KI and CRMP2KI/KI;CRMP4?/? embryos showed an increased number of dendritic branching points compared to those from wild‐type embryos. Sema3A increased the number of branching points and the total length of dendrites in wild‐type hippocampal neurons, but these effects of Sema3A for dendrites were notobserved in CRMP2KI/KI and CRMP2KI/KI;CRMP4?/?hippocampal neurons. Binding of CRMP2 to tubulin increased in both CRMP2KI/KI and CRMP2KI/KI:CRMP4?/? brain lysates. These results suggest that CRMP2 and CRMP4 synergistically regulate dendritic development, and CRMP2 phosphorylation is critical for proper bifurcation of apical dendrite of CA1 pyramidal neurons. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

17.
成年大鼠海马CA1区锥体细胞K_(ATP)通道的特性   总被引:1,自引:0,他引:1  
为了解成年大鼠海马CA1区锥体细胞KATP 通道的特性 ,实验采用膜片钳技术的内面向外式记录法 ,在急性分离的CA1区锥体神经元上 ,研究了可被胞浆侧ATP所抑制的钾离子单通道的特性。当细胞膜内外两侧的K 浓度均为 14 0mmol/L时 ,通道的电导为 63pS ,翻转电位为 1 71mV ,通道呈弱内向整流性。在负钳制电位时 ,通道开放时常被短时程的关闭所打断 ,而在正钳制电位时 ,这种短时程的关闭状态明显少于负钳制电位时。但通道开放概率未见明显的电压依赖性。ATP对通道活动的抑制作用呈浓度依赖性 ,抑制通道活动 5 0 %的ATP浓度为 0 1mmol/L。KATP 通道的特异性阻断剂tolbutamide (甲糖宁 ,1mmol/L)可完全阻断通道的活动 ,而KATP 通道开放剂diazoxide (二氮嗪 ,1mmol/L)则不增强通道的活动。  相似文献   

18.
Sodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.  相似文献   

19.
The ultrastructure of symmetric (putatively inhibitory) axo-dendritic synapses on the membrane of hippocampal CA1 pyramidal neurons was investigated in young (20-day-old) and adult (1-year-old) mice. It was shown that synapses of adult animals contain, on average, fewer synaptic vesicles (SVs), and resting SVs of the reserve pool are mostly responsible for this difference. At the same time, in the synapses of adult mice SVs are localized closer to active zones, and the readily releasable pool of SVs is larger in these animals than in young mice. The observed changes in the spatial structure of SV pools presumably demonstrate the age-associated adaptation of inhibitory synapses providing the maintenance of adequate functional properties of hippocampal neuronal networks. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 407–411, September–December, 2006.  相似文献   

20.
Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号