首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Visceral Leishmaniasis is a serious human disease transmitted, in the New World, by Lutzomyia longipalpis sand flies. Natural resistance to Leishmania transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose.

Methodology/Principal Findings

BluePort is a well-vascularized and macrophage-rich compartment induced in the subcutaneous tissue of mice via injection of agarose beads covered with Cibacron blue. We describe the sequence of inflammatory events leading to its formation and how it can be used to study the dermal response to the bite of L. longipalpis sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.

Conclusions/Significance

Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum.  相似文献   

2.

Background

Leishmaniasis is one of the most diverse and complex of all vector-borne diseases worldwide. It is caused by parasites of the genus Leishmania, obligate intramacrophage protists characterised by diversity and complexity. Its most severe form is visceral leishmaniasis (VL), a systemic disease that is fatal if left untreated. In Latin America VL is caused by Leishmania infantum chagasi and transmitted by Lutzomyia longipalpis. This phlebotomine sandfly is only found in the New World, from Mexico to Argentina. In South America, migration and urbanisation have largely contributed to the increase of VL as a public health problem. Moreover, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases.

Methodology/Principal Findings

An inventory of the microbiota associated with insect vectors, especially of wild specimens, would aid in the development of novel strategies for controlling insect vectors. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. Previous studies on wild and laboratory reared female Lu. longipalpis have described gut bacteria using standard bacteriological methods. In this study, total RNA was extracted from the insects and submitted to high-throughput pyrosequencing. The analysis revealed the presence of sequences from bacteria, fungi, protist parasites, plants and metazoans.

Conclusions/Significance

This is the first time an unbiased and comprehensive metagenomic approach has been used to survey taxa associated with an infectious disease vector. The identification of gregarines suggested they are a possible efficient control method under natural conditions. Ongoing studies are determining the significance of the associated taxa found in this study in a greater number of adult male and female Lu. longipalpis samples from endemic and non-endemic locations. A particular emphasis is being given to those species involved in the biological control of this vector and to the etiologic agents of animal and plant diseases.  相似文献   

3.

Background

Collection of the black fly vectors of onchocerciasis worldwide relies upon human landing collections. Recent studies have suggested that the Esperanza Window Trap baited with a human scent lure and CO2 had the potential to replace human hosts for the collection of Simulium ochraceum sensu lato in Southern Chiapas focus, Mexico. The feasibility of utilizing these traps in a community-based approach for the collection of S. ochraceum s.l. was evaluated.

Methodology/Principal findings

Local residents of a formerly endemic extra-sentinel community for onchocerciasis were trained to carry out collections using the traps. The residents operated the traps over a 60-day period and conducted parallel landing collections, resulting in a total of 28,397 vector black flies collected. None of the flies collected were found to contain parasite DNA when tested by a polymerase chain reaction assay targeting a parasite specific sequence, resulting in a point estimate of infection in the vectors of zero, with an upper bound of the 95% confidence interval 0.13 per 2,000. This meets the accepted criterion for demonstrating an interruption of parasite transmission.

Conclusions/Significance

These data demonstrate that Esperanza Window Traps may be effectively operated by minimally trained residents of formerly endemic communities, resulting in the collection of sufficient numbers of flies to verify transmission interruption of onchocerciasis. The traps represent a viable alternative to using humans as hosts for the collection of vector flies as part of the verification of onchocerciasis elimination.  相似文献   

4.
5.

Background

Canine Visceral Leishmaniasis (CVL) is a zoonotic disease caused by Leishmania infantum, transmitted by the bite of Lutzomyia longipalpis sand flies. Dogs are the main domestic reservoir of the parasite. The establishment of an experimental model that partially reproduces natural infection in dogs is very important to test vaccine candidates, mainly regarding those that use salivary proteins from the vector and new therapeutical approaches.

Methodology/Principal Findings

In this report, we describe an experimental infection in dogs, using intradermal injection of Leishmania infantum plus salivary gland homogenate (SGH) of Lutzomyia longipalpis. Thirty-five dogs were infected with 1×107 parasites combined with five pairs of Lutzomyia longipalpis salivary glands and followed for 450 days after infection and clinical, immunological and parasitological parameters were evaluated. Two hundred and ten days after infection we observed that 31,4% of dogs did not display detectable levels of anti-Leishmania antibodies but all presented different numbers of parasites in the lymph nodes. Animals with a positive xenodiagnosis had at least 3,35×105 parasites in their lymph nodes. An increase of IFN-γ and IL-10 levels was detected during infection. Twenty two percent of dogs developed symptoms of CVL during infection.

Conclusion

The infection model described here shows some degree of similarity when compared with naturally infected dogs opening new perspectives for the study of CVL using an experimental model that employs the combination of parasites and sand fly saliva both present during natural transmission.  相似文献   

6.

Background

The scarcity of information on the immature stages of sand flies and their preferred breeding sites has resulted in the focus of vectorial control on the adult stage using residual insecticide house-spraying. This strategy, along with the treatment of human cases and the euthanasia of infected dogs, has proven inefficient and visceral leishmaniasis continues to expand in Brazil. Identifying the breeding sites of sand flies is essential to the understanding of the vector''s population dynamic and could be used to develop novel control strategies.

Methodology/Principal finding

In the present study, an intensive search for the breeding sites of Lutzomyia longipalpis was conducted in urban and peri-urban areas of two municipalities, Promissão and Dracena, which are endemic for visceral leishmaniasis in São Paulo State, Brazil. During an exploratory period, a total of 962 soil emergence traps were used to investigate possible peridomiciliary breeding site microhabitats such as: leaf litter under tree, chicken sheds, other animal sheds and uncovered debris. A total of 160 sand flies were collected and 148 (92.5%) were L. longipalpis. In Promissão the proportion of chicken sheds positive was significantly higher than in leaf litter under trees. Chicken shed microhabitats presented the highest density of L. longipalpis in both municipalities: 17.29 and 5.71 individuals per square meter sampled in Promissão and Dracena respectively. A contagious spatial distribution pattern of L. longipalpis was identified in the emergence traps located in the chicken sheds.

Conclusion

The results indicate that chicken sheds are the preferential breeding site for L. longipalpis in the present study areas. Thus, control measures targeting the immature stages in chicken sheds could have a great effect on reducing the number of adult flies and consequently the transmission rate of Leishmania (Leishmania) infantum chagasi.  相似文献   

7.

Background

Carrion'' disease, caused by Bartonella bacilliformis, remains truly neglected due to its focal geographical nature. A wide spectrum of clinical manifestations, including asymptomatic bacteremia, and lack of a sensitive diagnostic test can potentially lead to a spread of the disease into non-endemic regions where competent sand fly vectors may be present. A reliable test capable of detecting B. bacilliformis is urgently needed. Our objective is to develop a loop-mediated isothermal amplification (LAMP) assay targeting the pap31 gene to detect B. bacilliformis.

Methods and Findings

The sensitivity of the LAMP was evaluated in comparison to qPCR using plasmid DNA containing the target gene and genomic DNA in the absence and presence of human or sand fly DNA. The detection limit of LAMP was 1 to 10 copies/µL, depending on the sample metrics. No cross-reaction was observed when testing against a panel of various closely related bacteria. The utility of the LAMP was further compared to qPCR by the examination of 74 Lutzomyia longipalpis sand flies artificially fed on blood spiked with B. bacilliformis and harvested at days (D) 1, 3, 5, 7 and 9 post feeding. Only 86% of sand flies at D1 and 63% of flies at D3 were positive by qPCR. LAMP was able to detect B. bacilliformis in all those flies confirmed positive by qPCR. However, none of the flies after D3 were positive by either LAMP or qPCR. In addition to demonstrating the sensitivity of the LAMP assay, these results suggest that B. bacilliformis cannot propagate in artificially fed L. longipalpis.

Conclusions

The LAMP assay is as sensitive as qPCR for the detection of B. bacilliformis and could be useful to support diagnosis of patients in low-resource settings and also to identify B. bacilliformis in the sand fly vector.  相似文献   

8.
9.

Background

Visceral Leishmaniasis (VL) is a life threatening neglected infectious disease in the Indian subcontinent, transmitted by the bite of female sand flies. Estimation of the infectivity in the vector population, collected in different seasons, may be useful to better understanding the transmission dynamics of VL as well as to plan vector control measures.

Methodology

We collected sand flies from highly endemic regions of Bihar state, India for one year over three seasons. The species of the sand flies were confirmed by species-specific PCR-RFLP. Leishmania donovani infection was investigated in 1397 female Phlebotomus argentipes using PCR, targeting the Leishmania specific minicircle of the kDNA region. Further, the parasitic load in the infected sand flies was measured using quantitative PCR.

Conclusion

Though sand flies were most abundant in the rainy season, the highest rate of infection was detected in the winter season with 2.84% sand flies infected followed by the summer and rainy seasons respectively. This study can help in vector elimination programmes and to reduce disease transmission.  相似文献   

10.

Background

Chrysomya spp are common blowflies in Africa, Asia and parts of South America and some species can reproduce in prodigious numbers in pit latrines. Because of their strong association with human feces and their synanthropic nature, we examined whether these flies are likely to be vectors of diarrheal pathogens.

Methodology/Principal Findings

Flies were sampled using exit traps placed over the drop holes of latrines in Gambian villages. Odor-baited fly traps were used to determine the relative attractiveness of different breeding and feeding media. The presence of bacteria on flies was confirmed by culture and bacterial DNA identified using PCR. A median of 7.00 flies/latrine/day (IQR = 0.0–25.25) was collected, of which 95% were Chrysomya spp, and of these nearly all were Chrysomya putoria (99%). More flies were collected from traps with feces from young children (median = 3.0, IQR = 1.75–10.75) and dogs (median = 1.50, IQR = 0.0–13.25) than from herbivores (median = 0.0, IQR = 0.0–0.0; goat, horse, cow and calf; p<0.001). Flies were strongly attracted to raw meat (median = 44.5, IQR = 26.25–143.00) compared with fish (median = 0.0, IQR = 0.0–19.75, ns), cooked and uncooked rice, and mangoes (median = 0.0, IQR = 0.0–0.0; p<0.001). Escherichia coli were cultured from the surface of 21% (15/72 agar plates) of Chrysomya spp and 10% of these were enterotoxigenic. Enteroaggregative E. coli were identified by PCR in 2% of homogenized Chrysomya spp, Shigella spp in 1.4% and Salmonella spp in 0.6% of samples.

Conclusions/Significance

The large numbers of C. putoria that can emerge from pit latrines, the presence of enteric pathogens on flies, and their strong attraction to raw meat and fish suggests these flies may be common vectors of diarrheal diseases in Africa.  相似文献   

11.

Background

In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia.

Methodology/Principal Findings

We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors).

Conclusions/Significance

We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors.  相似文献   

12.

Background

Leishmaniasis remains a global health problem because of the substantial holes that remain in our understanding of sand fly ecology and the failure of traditional vector control methods. The specific larval food source is unknown for all but a few sand fly species, and this is particularly true for the vectors of Leishmania parasites. We provide methods and materials that could be used to understand, and ultimately break, the transmission cycle of zoonotic cutaneous leishmaniasis.

Methods and Findings

We demonstrated in laboratory studies that analysis of the stable carbon and nitrogen isotopes found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet, without having to locate or capture the sand fly larvae themselves. In a field trial, we also demonstrated using this technique that half of captured adult sand flies had fed as larvae on rodent feces. Through the identification of rodent feces as a sand fly larval habitat, we now know that rodent baits containing insecticides that have been shown in previous studies to pass into the rodents'' feces and kill sand fly larvae also could play a future role in sand fly control. In a second study we showed that rubidium incorporated into rodent baits could be used to demonstrate the level of bloodfeeding by sand flies on baited rodents, and that the elimination of sand flies that feed on rodents can be achieved using baits containing an insecticide that circulates in the blood of baited rodents.

Conclusions

Combined, the techniques described could help to identify larval food sources of other important vectors of the protozoa that cause visceral or dermal leishmaniasis. Unveiling aspects of the life cycles of sand flies that could be targeted with insecticides would guide future sand fly control programs for prevention of leishmaniasis.  相似文献   

13.

Background

Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse.

Methodology/Principal Findings

Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal.

Conclusions/Significance

This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600 000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide.  相似文献   

14.

Background and Aims

The close relationship between distylic Cordia leucocephala and the bee Ceblurgus longipalpis, both endemic to the Caatinga, north-east Brazil, was investigated, emphasizing reproductive dependence, morphological adaptations of the partners, and pollen flow.

Methods

In the municipality of Pedra, in the Caatinga of Pernambuco, the breeding system and reproductive success of C. leucocephala, its interaction with flower visitors and inter- and intramorph pollen flow were determined.

Key Results

The bee Ceblurgus longipalpis, the unique flower visitor and effective pollinator of self-incompatible Cordia leucocephala, presents morphological features adapted to exploit hidden pollen and nectar in the long and narrow corolla tubes. Pollen of low-level anthers is collected with hairs on prolonged mouthparts and pollen of high-level anthers with clypeus, mandibles, and labrum, showing pollen removal from both levels with the same effectiveness. In both morphs, this results in similar legitimate, i.e. intermorph cross-pollen flow. Illegitimate pollen flow to stigmas of pin flowers, however, was much higher than to stigmas of thrum flowers. Moreover, more illegitimate pollen was transported to stigmas of pin and less to those of thrum flowers when compared with legitimate pollen flow.

Conclusions

The study reveals a one-to-one reproductive inter-dependence between both partners. Data indicate that this relationship between bee species and plant species is one of the rare cases of monolecty among bees. Monotypic Ceblurgus longipalpis, the only rophitine species of Brazil, evolved prolonged mouthparts rare among short-tongued bees that enable them to access pollen from flowers with short-level anthers hidden for bees of other species, and nectar at the base of the flower tube.  相似文献   

15.

Background

Lutzomyia longipalpis is the primary vector of American visceral leishmaniasis. There is strong evidence that L. longipalpis is a species complex, but until recently the existence of sibling species among Brazilian populations was considered a controversial issue. In addition, there is still no consensus regarding the number of species occurring in this complex.

Methodology/Principal Findings

Using period, a gene that controls circadian rhythms and affects interpulse interval periodicity of the male courtship songs in Drosophila melanogaster and close relatives, we analyzed the molecular polymorphism in a number of L. longipalpis samples from different regions in Brazil and compared the results with our previously published data using the same marker. We also studied the male copulation songs and pheromones from some of these populations. The results obtained so far suggest the existence of two main groups of populations in Brazil, one group representing a single species with males producing Burst-type copulation songs and cembrene-1 pheromones; and a second group that is more heterogeneous and probably represents a number of incipient species producing different combinations of Pulse-type songs and pheromones.

Conclusions/Significance

Our results reveal a high level of complexity in the divergence and gene-flow among Brazilian populations of the L. longipalpis species complex. This raises important questions concerning the epidemiological consequences of this incipient speciation process.  相似文献   

16.

Background

Entomological surveys of Simulium vectors are an important component in the criteria used to determine if Onchocerca volvulus transmission has been interrupted and if focal elimination of the parasite has been achieved. However, because infection in the vector population is quite rare in areas where control has succeeded, large numbers of flies need to be examined to certify transmission interruption. Currently, this is accomplished through PCR pool screening of large numbers of flies. The efficiency of this process is limited by the size of the pools that may be screened, which is in turn determined by the constraints imposed by the biochemistry of the assay. The current method of DNA purification from pools of vector black flies relies upon silica adsorption. This method can be applied to screen pools containing a maximum of 50 individuals (from the Latin American vectors) or 100 individuals (from the African vectors).

Methodology/Principal Findings

We have evaluated an alternative method of DNA purification for pool screening of black flies which relies upon oligonucleotide capture of Onchocerca volvulus genomic DNA from homogenates prepared from pools of Latin American and African vectors. The oligonucleotide capture assay was shown to reliably detect one O. volvulus infective larva in pools containing 200 African or Latin American flies, representing a two-four fold improvement over the conventional assay. The capture assay requires an equivalent amount of technical time to conduct as the conventional assay, resulting in a two-four fold reduction in labor costs per insect assayed and reduces reagent costs to $3.81 per pool of 200 flies, or less than $0.02 per insect assayed.

Conclusions/Significance

The oligonucleotide capture assay represents a substantial improvement in the procedure used to detect parasite prevalence in the vector population, a major metric employed in the process of certifying the elimination of onchocerciasis.  相似文献   

17.

Background

Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis.

Methodology/Principal Findings

Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-β. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression.

Conclusions/Significance

Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector.  相似文献   

18.

Background

Visceral Leishmaniasis (VL) is a vector-borne infectious disease, caused by the protozoan Leishmania donovani, which is transmitted by phlebotomine sand flies. In an earlier study in Bihar, India, we found an association between incidence of VL and housing conditions. In the current study we investigated the influence of housing structure and conditions in and around the house on the indoor abundance of Phlebotomus argentipes, the vector of VL in this area.

Methods

In each of 50 study villages in Muzaffarpur district, we randomly selected 10 houses. Light traps were installed in each house for one night during three annual peaks of sand fly density over two successive years. Sand flies captured were morphologically identified and segregated by species, sex and feeding status. Data on housing conditions and socio-economic status were also collected. We fitted a linear mixed-effects regression model with log-transformed P. argentipes counts as outcome variable and village as random effect.

Results

P. argentipes was found in all but four of the 500 households. There was considerable variability between the years and the seasons. On bivariate analysis, housing structure, dampness of the floor, keeping animals inside, presence of animal dung around the house, and socio-economic status were all significantly associated with sand fly density. Highest sand fly densities were observed in thatched houses. In the multivariate model only the housing structure and socio-economic status remained significant.

Conclusions

Better housing conditions are associated with lower sand fly densities, independent of other socio-economic conditions. However, in this area in Bihar even in the better-built houses sand flies are present.  相似文献   

19.

Background

Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure.

Methodology/principal findings

ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples.

Conclusion

Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas.  相似文献   

20.

Background

Phlebotomine sand flies are the vectors of the leishmaniases, parasitic diseases caused by Leishmania spp. Little is known about the prevalence and diversity of sand fly microflora colonizing the midgut or the cuticle. Particularly, there is little information on the fungal diversity. This information is important for development of vector control strategies.

Methodology/Principal Findings

Five sand fly species: Phlebotomus papatasi, P. sergenti, P. kandelakii, P. perfiliewi and P. halepensis were caught in Bileh Savar and Kaleybar in North-Western Iran that are located in endemic foci of visceral leishmaniasis. A total of 35 specimens were processed. Bacterial and fungal strains were identified by routine microbiological methods. We characterized 39 fungal isolates from the cuticle and/or the midgut. They belong to six different genera including Penicillium (17 isolates), Aspergillus (14), Acremonium (5), Fusarium (1), Geotrichum (1) and Candida (1). We identified 33 Gram-negative bacteria: Serratia marcescens (9 isolates), Enterobacter cloacae (6), Pseudomonas fluorescens (6), Klebsiella ozaenae (4), Acinetobacter sp. (3), Escherichia coli (3), Asaia sp. (1) and Pantoea sp. (1) as well as Gram-positive bacteria Bacillus subtilis (5) and Micrococcus luteus (5) in 10 isolates.

Conclusion/Significance

Our study provides new data on the microbiotic diversity of field-collected sand flies and for the first time, evidence of the presence of Asaia sp. in sand flies. We have also found a link between physiological stages (unfed, fresh fed, semi gravid and gravid) of sand flies and number of bacteria that they carry. Interestingly Pantoea sp. and Klebsiella ozaenae have been isolated in Old World sand fly species. The presence of latter species on sand fly cuticle and in the female midgut suggests a role for this arthropod in dissemination of these pathogenic bacteria in endemic areas. Further experiments are required to clearly delineate the vectorial role (passive or active) of sand flies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号