首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyan SW  Kuo WH  Huang CK  Pan CC  Shew JY  Chang KJ  Lee EY  Lee WH 《PloS one》2011,6(1):e15313
It has been well documented that microenvironment consisting of stroma affects breast cancer progression. However, the mechanisms by which cancer cells and fibroblasts, the major cell type in stroma, interact with each other during tumor development remains to be elucidated. Here, we show that the human cancer-associated fibroblasts (CAFs) had higher activity in enhancing breast tumorigenecity compared to the normal tissue-associated fibroblasts (NAFs) isolated from the same patients. The expression level of hepatocyte growth factor (HGF) in these fibroblasts was positively correlated with their ability to enhance breast tumorigenesis in mice. Deprivation of HGF using a neutralizing antibody reduced CAF-mediated colony formation of human breast cancer cells, indicating that CAFs enhanced cancer cell colony formation mainly through HGF secretion. Co-culture with human breast cancer MDA-MB-468 cells in a transwell system enhanced NAFs to secret HGF as well as promote tumorigenecity. The newly gained ability of these "educated" NAFs became irreversible after continuing this process till fourth passage. These results suggested that breast cancer cells could alter the nature of its surrounding fibroblasts to secrete HGF to support its own progression through paracrine signaling.  相似文献   

2.
Tumor microenvironment: the role of the tumor stroma in cancer   总被引:1,自引:0,他引:1  
The tumor microenvironment, composed of non-cancer cells and their stroma, has become recognized as a major factor influencing the growth of cancer. The microenvironment has been implicated in the regulation of cell growth, determining metastatic potential and possibly determining location of metastatic disease, and impacting the outcome of therapy. While the stromal cells are not malignant per se, their role in supporting cancer growth is so vital to the survival of the tumor that they have become an attractive target for chemotherapeutic agents. In this review, we will discuss the various cellular and molecular components of the stromal environment, their effects on cancer cell dynamics, and the rationale and implications of targeting this environment for control of cancer. Additionally, we will emphasize the role of the bone marrow-derived cell in providing cells for the stroma.  相似文献   

3.
Our recent studies have mechanistically demonstrated that cancer-associated fibroblasts (CAFs) produce energy-rich metabolites that functionally support the growth of cancer cells. Also, several authors have demonstrated that DNA instability in the tumor stroma greatly contributes to carcinogenesis. To further test this hypothesis, we stably knocked-down BRCA1 expression in human hTERT-immortalized fibroblasts (shBRCA1) using an shRNA lentiviral approach. As expected, shBRCA1 fibroblasts displayed an elevated growth rate. Using immunofluorescence and immunoblot analysis, shBRCA1 fibroblasts demonstrated an increase in markers of autophagy and mitophagy. Most notably, shBRCA1 fibroblasts also displayed an elevation of HIF-1α expression. In accordance with these findings, shBRCA1 fibroblasts showed a 5.5-fold increase in ketone body production; ketone bodies function as high-energy mitochondrial fuels. This is consistent with the onset of mitochondrial dysfunction in BRCA1-deficient fibroblasts. Conversely, after 48 h of co-culturing shBRCA1 fibroblasts with a human breast cancer cell line (MDA-MB-231 cell), mitochondrial activity was enhanced in these epithelial cancer cells. Interestingly, our preclinical studies using xenografts demonstrated that shBRCA1 fibroblasts induced an ~2.2-fold increase in tumor growth when co-injected with MDA-MB-231 cells into nude mice. We conclude that a BRCA1 deficiency in the tumor stroma metabolically promotes cancer progression, via ketone production.  相似文献   

4.
Our recent studies have mechanistically demonstrated that cancer-associated fibroblasts (CAFs) produce energy-rich metabolites that functionally support the growth of cancer cells. Also, several authors have demonstrated that DNA instability in the tumor stroma greatly contributes to carcinogenesis. To further test this hypothesis, we stably knocked-down BRCA1 expression in human hTERT-immortalized fibroblasts (shBRCA1) using an shRNA lentiviral approach. As expected, shBRCA1 fibroblasts displayed an elevated growth rate. Using immunofluorescence and immunoblot analysis, shBRCA1 fibroblasts demonstrated an increase in markers of autophagy and mitophagy. Most notably, shBRCA1 fibroblasts also displayed an elevation of HIF-1α expression. In accordance with these findings, shBRCA1 fibroblasts showed a 5.5-fold increase in ketone body production; ketone bodies function as high-energy mitochondrial fuels. This is consistent with the onset of mitochondrial dysfunction in BRCA1-deficient fibroblasts. Conversely, after 48 h of co-culturing shBRCA1 fibroblasts with a human breast cancer cell line (MDA-MB-231 cell), mitochondrial activity was enhanced in these epithelial cancer cells. Interestingly, our preclinical studies using xenografts demonstrated that shBRCA1 fibroblasts induced an ~2.2-fold increase in tumor growth when co-injected with MDA-MB-231 cells into nude mice. We conclude that a BRCA1 deficiency in the tumor stroma metabolically promotes cancer progression, via ketone production.  相似文献   

5.
Comment on: Capparelli C, et al. Cell Cycle 2012; 11:2272-84 and Capparelli C, et al. Cell Cycle 2012; 11:2285-302.Otto Warburg first observed that cancer cells preferentially undergo glycolysis instead of the mitochondrial TCA cycle even under oxygen-rich conditions. This form of energy metabolism in cancer cells is called “aerobic glycolysis” or the “Warburg effect.”1 Lisanti and colleagues have previously proposed an alternative model called the “the reverse Warburg effect,” in which aerobic glycolysis predominantly occurs in stromal fibroblasts.2 During this process, cancer cells secrete oxidative stress factors, such as hydrogen peroxide, into the tumor microenvironment, which induces autophagy. This leads to degradation of mitochondria (mitophagy) and elevated glycolysis in cancer-associated fibroblasts.3 Aerobic glycolysis results in the elevated production of pyruvate, ketone bodies and L-lactate, which can be utilized by cancer cells for anabolic growth and metastasis. At the molecular level, stromal fibroblasts lose expression of caveolin-1 and activate HIF-1a (Fig. 1), TGFβ and NFκB signaling.4 Stromal caveolin-1 expression predicts clinical outcome in breast cancer patients.5Open in a separate windowFigure 1. CTGF-mediated autophagy-senescence transition in tumor stroma promotes anabolic tumor growth and metastasis. Cancer cells secrete oxidative stress factors (H2O2) that induce autophagy in cancer-associated fibroblasts. Additionally, caveolin-1 (cav-1) loss leads to activation of connective tissue growth factor (CTGF) and HIF-1α that mediate autophagy and senescence in these stromal cells. This is called the autophagy-senescence transition (AST). AST leads to mitophagy and elevated glycolysis in cancer-associated fibroblasts. Aerobic glycolysis results in the elevated production of several nutrients (pyruvate, ketone bodies and L-lactate), which can be utilized by cancer cells for tumor growth and metastasis.In the June 15, 2012 issue of Cell Cycle, two studies by Capparelli et al. further validate the “autophagic tumor stroma model of cancer” described above, as well as identify novel mechanisms involved in this process.6,7 Autophagy and senescence are induced by the same stimuli and are known to occur simultaneously in cells. In the first study, the authors hypothesize that the onset of senescence in the tumor stroma in response to autophagy/mitophagy contributes to mitochondrial dysfunction and aerobic glycolysis. In order to genetically validate this process of autophagy-senescence transition (AST) (Fig. 1), Capparelli et al. overexpressed several autophagy-promoting factors (BNIP3, cathepsin B, Beclin-1 and ATG16L1) in hTERT fibroblasts to constitutively induce autophagy. Autophagic fibroblasts lost caveolin-1 expression and displayed enhanced tumor growth and metastasis when co-injected with breast cancer cells in mice, without an increase in angiogenesis. In contrast, constitutive activation of autophagy in breast cancer cells inhibited in vivo tumor growth. Autophagic fibroblasts also showed mitochondrial dysfunction, increased production of nutrients (L-lactate and ketone bodies) and features of senescence (β-galactosidase activity and p21 activation). AST was also demonstrated in human breast cancer patient samples.7 In the second study, using a similar experimental approach, the authors evaluated the role of the TGFβ target gene, connective tissue growth factor (CTGF), in the induction of AST and aerobic glycolysis in cancer-associated fibroblasts. CTGF would be activated in the tumor stroma upon loss of caveolin-1. CTGF overexpression in fibroblasts induced autophagy/mitophagy, glycolysis and L-lactate production in a HIF-1α-dependent manner along with features of senescence and oxidative stress. CTGF overexpression in fibroblasts also promoted tumor growth when co-injected with breast cancer cells in mice (Fig. 1), independent of angiogenesis. As expected, CTGF overexpression in breast cancer cells inhibited tumor growth. CTGF is known to be involved in extracellular matrix synthesis; however, the effects of CTGF overexpression in fibroblasts and tumor cells were found to be independent of this function.6Overall, the authors have identified a novel mechanism by which CTGF promotes AST and aerobic glycolysis in cancer-associated fibroblasts. In turn, the stromal cells stimulate anabolic tumor growth and metastasis. The authors also genetically validate the two-compartment model of cancer metabolism, whereby autophagy genes and CTGF have differential effects in stromal cells and tumor cells. The current studies have several implications for cancer therapy. The finding that HIF-1 activation is necessary for the induction of autophagy and senescence downstream of caveolin-1 loss and CTGF activation in stromal fibroblasts is intriguing. Activation of HIF-1 in the hypoxic tumor microenvironment is known to promote tumor cell growth, survival and therapeutic resistance.8 Therefore, targeting HIF-1 has the potential to block tumor progression through dual inhibitory effects on hypoxic cancer cell growth and survival as well as the induction of autophagy in stromal fibroblasts. CTGF and AST in the tumor stroma could serve as biomarkers for predicting clinical outcome, therapy response and metastasis. The two-compartment model of tumor metabolism raises further questions regarding the use of antioxidants and autophagy inhibitors/inducers for cancer therapy. The use of these agents in the clinic should be carefully evaluated considering their differential effects on stromal cells and cancer cells.  相似文献   

6.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

7.
Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as its defining hallmark. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including identification of precursor lesions, sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of these events on malignant behavior. However, the currently used therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to produce significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor's mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and the stroma will be important to designing effective therapeutic strategies for pancreatic cancer. This review focuses on the origin of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration of these two components.  相似文献   

8.
9.

Background

The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression.

Results

Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor’s inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer.

Conclusions

Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
  相似文献   

10.
11.
Previously, we identified a form of epithelial-stromal metabolic coupling, in which cancer cells induce aerobic glycolysis in adjacent stromal fibroblasts, via oxidative stress, driving autophagy and mitophagy. In turn, these cancer-associated fibroblasts provide recycled nutrients to epithelial cancer cells, "fueling" oxidative mitochondrial metabolism and anabolic growth. An additional consequence is that these glycolytic fibroblasts protect cancer cells against apoptosis, by providing a steady nutrient stream of to mitochondria in cancer cells. Here, we investigated whether these interactions might be the basis of tamoxifen-resistance in ER(+) breast cancer cells. We show that MCF7 cells alone are Tamoxifen-sensitive, but become resistant when co-cultured with hTERT-immortalized human fibroblasts. Next, we searched for a drug combination (Tamoxifen + Dasatinib) that could over-come fibroblast-induced Tamoxifen-resistance. Importantly, we show that this drug combination acutely induces the Warburg effect (aerobic glycolysis) in MCF7 cancer cells, abruptly cutting off their ability to use their fuel supply, effectively killing these cancer cells. Thus, we believe that the Warburg effect in tumor cells is not the "root cause" of cancer, but rather it may provide the necessary clues to preventing chemo-resistance in cancer cells. Finally, we observed that this drug combination (Tamoxifen + Dasatinib) also had a generalized anti-oxidant effect, on both co-cultured fibroblasts and cancer cells alike, potentially reducing tumor-stroma co-evolution. Our results are consistent with the idea that chemo-resistance may be both a metabolic and stromal phenomenon that can be overcome by targeting mitochondrial function in epithelial cancer cells. Thus, simultaneously targeting both (1) the tumor stroma and (2) the epithelial cancer cells, with combination therapies, may be the most successful approach to anti-cancer therapy. This general strategy of combination therapy for overcoming drug resistance could be applicable to many different types of cancer.  相似文献   

12.
Tumours are highly complex tissues composed of carcinoma cells and surrounding stroma, which is constructed by various different types of mesenchymal cells and an extracellular matrix (ECM). Carcinoma-associated fibroblasts (CAFs), which consist of both fibroblasts and myofibroblasts, are frequently observed in the stroma of human carcinomas, and their presence in large numbers is often associated with the development of high-grade malignancies and poor prognoses. Moreover, in human tumour xenograft models, CAFs extracted from the tumour are more capable of promoting tumour growth through their interactions with carcinoma cells when compared to those isolated from non-cancerous stroma. Taken together, these observations strongly suggest that CAFs actively contribute to tumour progression. In this review we highlight the emerging roles of these cells in promoting tumourigenesis, and we discuss the molecular mechanisms underlying their tumour-promoting capabilities and their cellular origin.  相似文献   

13.
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.  相似文献   

14.
15.
Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer.  相似文献   

16.
17.

Background

Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion.

Principal Findings

Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (α-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of α-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development of invadopodia-like cellular protrusions which express invadopodia proteins and proteolytic enzymes. Palladin expression in fibroblasts is triggered by the co-culture of normal fibroblasts with k-ras-expressing epithelial cells.

Conclusions

Overall, palladin expression can impart myofibroblast properties, in turn promoting the invasive potential of these peri-tumoral cells with invadopodia-driven degradation of extracellular matrix. Palladin expression in fibroblasts can be triggered by k-ras expression in adjacent epithelial cells. This data supports a model whereby palladin-activated fibroblasts facilitate stromal-dependent metastasis and outgrowth of tumorigenic epithelium.  相似文献   

18.
肿瘤的发生发展是一个肿瘤细胞与其微环境相互促进,共同演化的动态过程.实体肿瘤的发生发展过程伴随细胞外基质的过量沉积及其组织形式的异常以及成纤维细胞的活化和富集.细胞外基质与肿瘤相关成纤维细胞不仅是实体肿瘤的重要病理特征,同时也是恶性肿瘤发展的重要驱动力量.细胞外基质与肿瘤相关成纤维细胞通过多种机制促进了肿瘤的发生、发展和转移.针对细胞外基质与肿瘤相关成纤维细胞进行肿瘤治疗,可以为肿瘤的临床治疗提供新的思路.  相似文献   

19.
Previously, we identified a form of epithelial-stromal metabolic coupling, in which cancer cells induce aerobic glycolysis in adjacent stromal fibroblasts, via oxidative stress, driving autophagy and mitophagy. In turn, these cancer-associated fibroblasts provide recycled nutrients to epithelial cancer cells, “fueling” oxidative mitochondrial metabolism and anabolic growth. An additional consequence is that these glycolytic fibroblasts protect cancer cells against apoptosis, by providing a steady nutrient stream to mitochondria in cancer cells. Here, we investigated whether these interactions might be the basis of tamoxifen-resistance in ER(+) breast cancer cells. We show that MCF7 cells alone are Tamoxifen-sensitive, but become resistant when co-cultured with hTERT-immortalized human fibroblasts. Next, we searched for a drug combination (Tamoxifen + Dasatinib) that could over-come fibroblast-induced Tamoxifen-resistance. Importantly, we show that this drug combination acutely induces the Warburg effect (aerobic glycolysis) in MCF7 cancer cells, abruptly cutting off their ability to use their fuel supply, effectively killing these cancer cells. Thus, we believe that the Warburg effect in tumor cells is not the “root cause” of cancer, but rather it may provide the necessary clues to preventing chemoresistance in cancer cells. Finally, we observed that this drug combination (Tamoxifen + Dasatinib) also had a generalized anti-oxidant effect, on both co-cultured fibroblasts and cancer cells alike, potentially reducing tumor-stroma co-evolution. Our results are consistent with the idea that chemo-resistance may be both a metabolic and stromal phenomenon that can be overcome by targeting mitochondrial function in epithelial cancer cells. Thus, simultaneously targeting both (1) the tumor stroma and (2) the epithelial cancer cells, with combination therapies, may be the most successful approach to anti-cancer therapy. This general strategy of combination therapy for overcoming drug resistance could be applicable to many different types of cancer.Key words: drug resistance, tamoxifen, dasatinib, tumor stroma, microenvironment, Warburg effect, aerobic glycolysis, mitochondrial oxidative phosphorylation, glucose uptake, oxidative stress, reactive oxygen species (ROS), cancer-associated fibroblasts  相似文献   

20.
The tumor microenvironment is known to play a key role in altering the properties and behavior of nearby cancer cells. Its influence on resistance to endocrine therapy and cancer relapse, however, is poorly understood. Here we investigate the interaction of mammary fibroblasts and estrogen receptor-positive breast cancer cells in three-dimensional culture models in order to characterize gene expression, cellular changes, and the secreted protein factors involved in the cellular cross-talk. We show that fibroblasts, which are the predominant cell type found in the stroma adjacent to the cancer cells in a tumor, induce an epithelial-to-mesenchymal transition in the cancer cells, leading to hormone-independent growth, a more invasive phenotype, and resistance to endocrine therapy. Here, we applied a label-free chemical imaging modality, Fourier transform infrared (FT-IR) spectroscopic imaging, to identify cells that had transitioned to hormone-independent growth. Both the molecular and chemical profiles identified here were translated from cell culture to patient samples: a secreted protein signature was used to stratify patient populations based on gene expression and FT-IR was used to characterize breast tumor patient biopsies. Our findings underscore the role of mammary fibroblasts in promoting aggressiveness and endocrine therapy resistance in ER-positive breast cancers and highlight the utility of FT-IR for the further characterization of breast cancer samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号