首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4?/? macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.  相似文献   

2.
Mycobacterial heparin-binding haemagglutinin antigen (HBHA) is a virulence factor that induces apoptosis of macrophages. Endoplasmic reticulum (ER) stress-mediated apoptosis is an important regulatory response that can be utilised to study the pathogenesis of tuberculosis. In the present study, HBHA stimulation induced ER stress sensor molecules in a caspase-dependent manner. Pre-treatment of RAW 264.7 cells with an IκB kinase 2 inhibitor reduced not only C/EBP homology protein expression but also IL-6 and monocyte chemotactic protein-1 (MCP-1) production. BAPTA-AM reduced both ER stress responses and caspase activation and strongly suppressed HBHA-induced IL-6 and MCP-1 production in RAW 264.7 cells. Enhanced reactive oxygen species (ROS) production and elevated cytosolic [Ca2+]i levels were essential for HBHA-induced ER stress responses. Collectively, our data suggest that HBHA induces cytosolic [Ca2+]i, which influences the generation of ROS associated with the production of proinflammatory cytokines. These concerted and complex cellular responses induce ER stress-associated apoptosis during HBHA stimulation in macrophages. These results indicate that the ER stress pathway has an important role in the HBHA-induced apoptosis during mycobacterial infection.  相似文献   

3.
The present study was conducted to see the role of NF-kappaB in virulent (Mycobacterium tuberculosis H37Rv) and avirulent (M. tuberculosis H37Ra) mycobacterial infection in THP-1 cells. To inactivate NF-kappaB, pCMV-IkappaBalphaM dn containing THP-1 cell line was generated which showed marked increase in apoptosis with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Infected THP-1-IkappaBalphaM dn cells showed decrease in mitochondrial membrane potential, cytochrome c release, activation of caspase-3 and enhanced TNF-alpha production. Increase in apoptosis of infected THP-1-IkappaBalphaM dn cells resulted in inhibition of intracellular mycobacterial growth. Differential NF-kappaB activation potential was observed with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Both the strains activated NF-kappaB after 4 h in THP-1 cells however after 48 h only M. tuberculosis H37Rv activated NF-kappaB which lead to up-regulation of bcl-2 family anti-apoptotic member, bfl-1/A1. Our results indicated that NF-kappaB activation may be a determinant factor for the success of virulent mycobacteria within macrophages.  相似文献   

4.
In addition to direct bactericidal activities, such as phagocytosis and generation of reactive oxygen species (ROS), neutrophils can regulate the inflammatory response by undergoing apoptosis. We found that infection of human neutrophils with Mycobacterium tuberculosis (Mtb) induced rapid cell death displaying the characteristic features of apoptosis such as morphologic changes, phosphatidylserine exposure, and DNA fragmentation. Both a virulent (H37Rv) and an attenuated (H37Ra) strain of Mtb were equally effective in inducing apoptosis. Pretreatment of neutrophils with antioxidants or an inhibitor of NADPH oxidase markedly blocked Mtb-induced apoptosis but did not affect spontaneous apoptosis. Activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis, but it was markedly augmented and accelerated during Mtb-induced apoptosis. The Mtb-induced apoptosis was associated with a speedy and transient increase in expression of Bax protein, a proapoptotic member of the Bcl-2 family, and a more prominent reduction in expression of the antiapoptotic protein Bcl-x(L). Pretreatment with an inhibitor of NADPH oxidase distinctly suppressed the Mtb-stimulated activation of caspase-3 and alteration of Bax/Bcl-x(L) expression in neutrophils. These results indicate that infection with Mtb causes ROS-dependent alteration of Bax/Bcl-x(L) expression and activation of caspase-3, and thereby induces apoptosis in human neutrophils. Moreover, we found that phagocytosis of Mtb-induced apoptotic neutrophils markedly increased the production of proinflammatory cytokine TNF-alpha by human macrophages. Therefore, the ROS-dependent apoptosis in Mtb-stimulated neutrophils may represent an important host defense mechanism aimed at selective removal of infected cells at the inflamed site, which in turn aids the functional activities of local macrophages.  相似文献   

5.
结核分枝杆菌hbhA编码基因是目前发现的与肺外结核转移相关的基因,其表达产物结核分枝杆菌肝素结合血凝黏附素(HBHA),是结核分枝杆菌表面表达和分泌的一种糖蛋白。HBHA具有介导肺结核和肺外结核的发生,参与实现MTB逃逸吞噬体进入细胞质中生存和繁殖,引起巨噬细胞凋亡等重要生物学功能,同时HBHA作为特异性抗原,用作免疫学检测具有较好的效果,并且动物实验证实HBHA具有明确的免疫治疗作用。因此,HBHA在结核病的免疫学诊断及免疫治疗方面,具有广阔的应用前景。  相似文献   

6.
Mycobacterium tuberculosis, the causative agent of tuberculosis, produces a heparin-binding haemagglutinin adhesin (HBHA), which is involved in its epithelial adherence. To ascertain whether HBHA is also present in fast-growing mycobacteria, Mycobacterium smegmatis was studied using anti-HBHA monoclonal antibodies (mAbs). A cross-reactive protein was detected by immunoblotting of M. smegmatis whole-cell lysates. However, the M. tuberculosis HBHA-encoding gene failed to hybridize with M. smegmatis chromosomal DNA in Southern blot analyses. The M. smegmatis protein recognized by the anti-HBHA mAbs was purified by heparin-Sepharose chromatography, and its amino-terminal sequence was found to be identical to that of the previously described histone-like protein, indicating that M. smegmatis does not produce HBHA. Biochemical analysis of the M. smegmatis histone-like protein shows that it is glycosylated like HBHA. Immunoelectron microscopy demonstrated that the M. smegmatis protein is present on the mycobacterial surface, a cellular localization inconsistent with a histone-like function, but compatible with an adhesin activity. In vitro protein interaction assays showed that this glycoprotein binds to laminin, a major component of basement membranes. Therefore, the protein was called M. smegmatis laminin-binding protein (MS-LBP). MS-LBP does not appear to be involved in adherence in the absence of laminin but is responsible for the laminin-mediated mycobacterial adherence to human pneumocytes and macrophages. Homologous laminin-binding adhesins are also produced by virulent mycobacteria such as M. tuberculosis and Mycobacterium leprae, suggesting that this adherence mechanism may contribute to the pathogenesis of mycobacterial diseases.  相似文献   

7.
Although pathogenic mechanisms of tuberculosis have been extensively studied, little is known about the pathogenic mechanisms of Mycobacterium kansasii. In this work the influence of virulence and ER-stress mediated apoptosis of macrophages during two different strains of M. kansasii infection was investigated. We show that M. kansasii infection is associated with ER stress-mediated apoptosis in the murine macrophage cell line RAW 264.7. Infection of RAW 264.7 cells in vitro with apoptosis-inducing a clinical isolate of M. kansasii SM-1 (SM-1) resulted in strong induction of ER stress responses compared with M. kansasii type strain (ATCC 12478)-infected RAW 264.7 cells. Interestingly, inhibition of calpain prevented the induction of CHOP and Bip in ATCC 12478-infected RAW 264.7 cells but not in RAW 264.7 cells infected with SM-1. In contrast, reactive oxygen species (ROS) were significantly increased only in RAW 264.7 cells infected with SM-1. We propose that ROS generation is important for triggering ER stress-mediated apoptosis during SM-1 infection, whereas ATCC 12478-induced, ER stress-mediated apoptosis is associated with calpain activation. Our results demonstrate that the ER stress pathway plays important roles in the pathogenesis of M. kansasii infections, and that different strains of M. kansasii induce different patterns of ER stress-mediated apoptosis.  相似文献   

8.
Pandey RK  Bhatt KH  Dahiya Y  Sodhi A 《PloS one》2011,6(2):e17093
Mycobacterium indicus pranii (MIP), also known as Mw, is a saprophytic, non-pathogenic strain of Mycobacterium and is commercially available as a heat-killed vaccine for leprosy and recently tuberculosis (TB) as part of MDT. In this study we provide evidence that cell-free supernatant collected from original MIP suspension induces rapid and enhanced apoptosis in mouse peritoneal macrophages in vitro. It is demonstrated that the MIP cell-free supernatant induced apoptosis is mitochondria-mediated and caspase independent and involves mitochondrial translocation of Bax and subsequent release of AIF and cytochrome c from the mitochondria. Experiments with pharmacological inhibitors suggest a possible role of PKC in mitochondria-mediated apoptosis of macrophages.  相似文献   

9.
Human macrophages (Mphi) respond to Mycobacterium tuberculosis (Mtb) infection by undergoing apoptosis, a cornerstone of effective antimycobacterial host defense. Virulent mycobacteria override this reaction by inducing necrosis leading to uncontrolled Mtb replication. Accordingly, Mphi death induced by inoculation with Mtb had the characteristics of apoptosis and necrosis and correlated with moderate increase of mitochondrial permeability transition (MPT), mitochondrial cytochrome c release, and caspase-9 and -3 activation. We hypothesized that changes in intramitochondrial Ca(2+) concentration ([Ca(2+)](m)) determine whether Mphi undergo either apoptosis or necrosis. Therefore, we induced mechanism(s) leading to predominant apoptosis or necrosis by modulating [Ca(2+)](m) and examined their physiological consequences. Adding calcium ionophore A23187 to Mphi inoculated with Mtb further increased calcium flux into the cells which is thought to lead to increased [Ca(2+)](m), blocked necrosis, stabilized MPT, decreased mitochondrial cytochrome c release, lowered caspase activation, and accompanied effective antimycobacterial activity. In contrast, Mphi infected with Mtb in presence of the mitochondrial calcium uniporter inhibitor ruthenium red showed increased mitochondrial swelling and cytochrome c release and decreased MPT and antimycobacterial activity. Thus, in Mtb-infected Mphi, high levels of mitochondrial membrane integrity, low levels of caspase activation, and diminished mitochondrial cytochrome c release are hallmarks of apoptosis and effective antimycobacterial activity. In contrast, breakdown of mitochondrial membrane integrity and increased caspase activation are characteristic of necrosis and uncontrolled Mtb replication.  相似文献   

10.
Human alveolar macrophages (AMphi) undergo apoptosis following infection with Mycobacterium tuberculosis in vitro. Apoptosis of cells infected with intracellular pathogens may benefit the host by eliminating a supportive environment for bacterial growth. The present study compared AMphi apoptosis following infection by M. tuberculosis complex strains of differing virulence and by Mycobacterium kansasii. Avirulent or attenuated bacilli (M. tuberculosis H37Ra, Mycobacterium bovis bacillus Calmette-Guérin, and M. kansasii) induced significantly more AMphi apoptosis than virulent strains (M. tuberculosis H37Rv, Erdman, M. tuberculosis clinical isolate BMC 96.1, and M. bovis wild type). Increased apoptosis was not due to greater intracellular bacterial replication because virulent strains grew more rapidly in AMphi than attenuated strains despite causing less apoptosis. These findings suggest the existence of mycobacterial virulence determinants that modulate the apoptotic response of AMphi to intracellular infection and support the hypothesis that macrophage apoptosis contributes to innate host defense in tuberculosis.  相似文献   

11.
Zhao S  Zhao Y  Mao F  Zhang C  Bai B  Zhang H  Shi C  Xu Z 《PloS one》2012,7(2):e31908
Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.  相似文献   

12.
The macrophage is the niche of the intracellular pathogen Mycobacterium tuberculosis. Induction of macrophage apoptosis by CD4(+) or CD8(+) T cells is accompanied by reduced bacterial counts, potentially defining a host defense mechanism. We have already established that M. tuberculosis-infected primary human macrophages have a reduced susceptibility to Fas ligand (FasL)-induced apoptosis. To study the mechanisms by which M. tuberculosis prevents apoptotic signaling, we have generated a cell culture system based on PMA- and IFN-gamma-differentiated THP-1 cells recapitulating the properties of primary macrophages. In these cells, nucleotide-binding oligomerization domain 2 or TLR2 agonists and mycobacterial infection protected macrophages from apoptosis and resulted in NF-kappaB nuclear translocation associated with up-regulation of the antiapoptotic cellular FLIP. Transduction of a receptor-interacting protein-2 dominant-negative construct showed that nucleotide-binding oligomerization domain 2 is not involved in protection in the mycobacterial infection system. In contrast, both a dominant-negative construct of the MyD88 adaptor and an NF-kappaB inhibitor abrogated the protection against FasL-mediated apoptosis, showing the implication of TLR2-mediated activation of NF-kappaB in apoptosis protection in infected macrophages. The apoptosis resistance of infected macrophages might be considered as an immune escape mechanism, whereby M. tuberculosis subverts innate immunity signaling to protect its host cell against FasL(+)-specific cytotoxic lymphocytes.  相似文献   

13.
Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.  相似文献   

14.
In this study, we characterized the humoral responses in cattle of Sardinia. The animals were divided into three groups: 1) 28 cattle infected with Mycobacterium bovis; 2) 48 cattle from herds in which foci of infection was notified; 3) 50 cattle from herds that were TB-free. Levels of IgG antibody were measured against the following antigens of M. tuberculosis: Heparin-Binding-Haemagglutin (HBHA), Ag85B, PPE44, and PE_PGRS33 to investigate their potential to diagnose TB in animals. Our results indicated that HBHA is a potential candidate for the development of a serological assay for rapid diagnosis of cattle infected with M. bovis.  相似文献   

15.
Eicosanoids regulate whether human and murine macrophages infected with Mycobacterium tuberculosis die by apoptosis or necrosis. The death modality is important since apoptosis is associated with diminished pathogen viability and should be viewed as a form of innate immunity. Apoptotic vesicles derived from infected macrophages are also an important source of bacterial antigens that can be acquired by dendritic cells to prime antigen-specific T cells. This review integrates in vitro and in vivo data on how apoptosis of infected macrophages is linked to development of T cell immunity against M. tuberculosis.  相似文献   

16.
Macrophage apoptosis plays a role in mycobacterial infection. To define the mechanism by which virulent Mycobacterium tuberculosis escapes apoptosis and killing in macrophages, J774 macrophages were infected with virulent M. tuberculosis H37Rv and attenuated H37Ra strains. H37Rv induced less apoptosis than H37Ra, and caspase 3 was activated in H37Ra- and H37Rv-infected macrophages. Intracellular H37Rv bacilli were released at a higher rate into the supernatant than were H37Ra by the sixth day of infection, and this was simultaneously accompanied by the increased necrosis of infected cells showing lactate dehydrogenase (LDH) release. Fas mRNA expression was downregulated and FasL was upregulated in H37Ra- and H37Rv-infected macrophages, while Bcl-2 was upregulated in H37Rv-infected macrophages but downregulated in H37Ra-infected macrophages as seen by real-time PCR. These results indicate that M. tuberculosis H37Ra and H37Rv proliferate in macrophages by preventing them from inducing apoptosis during the early phase of infection, and that M. tuberculosis H37Rv-infected macrophages are found to express Bcl-2 mRNA, which leads to anti-apoptotic activity, and that relatively distinct necrosis might occur during the later phase of infection.  相似文献   

17.
Ectopic expression of the Mycobacterium tuberculosis PE-family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells. Apoptosis induced by Rv1818c is blocked by the broad-spectrum caspase inhibitory peptide zVAD-FMK. Unexpectedly, Rv1818c-induced apoptosis is not blocked in a Jurkat sub-clone deficient for caspase-8 (JI 9.2) or in cells where caspase-9 function is inhibited or expression of caspase-9 reduced by siRNA, arguing against a central role for these caspases in Rv1818c-induced apoptotic signaling. Depleting cellular pools of the mitochondrial protein Smac/DIABLO substantially reduces apoptosis consistent with mitochondrial involvement in this death pathway. We present evidence that Rv1818c-induced apoptosis is blocked by the co-transfection of an endogenous inhibitor of caspase activation, XIAP in T cells. Additionally, Rv1818c is released into extracellular environment via exosomes secreted by M. tuberculosis infected BM-DC's and macrophages. Furthermore, the extracellular Rv1818c protein can be detected in T cells co-cultured with infected BM-DC's. Taken together, these data suggest that Rv1818c-induced apoptotic signaling is likely regulated in part by the Smac-dependent activation of caspases in T cells.  相似文献   

18.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

19.
Mycobacterium tuberculosis (Mtb) kills infected macrophages through necroptosis, a programmed cell death that enhances mycobacterial replication and dissemination. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mtb in macrophages and induces necroptosis by NAD+ hydrolysis. Here, we show that the catalytic activity of TNT triggers the production of reactive oxygen species (ROS) in Mtb‐infected macrophages causing cell death and promoting mycobacterial replication. TNT induces ROS formation both by activating necroptosis and by a necroptosis‐independent mechanism. Most of the detected ROS originate in mitochondria as a consequence of opening the mitochondrial permeability transition pore. However, a significant part of ROS is produced by mechanisms independent of TNT and necroptosis. Expressing only the tnt gene in Jurkat T‐cells also induces lethal ROS formation indicating that these molecular mechanisms are not restricted to macrophages. Both the antioxidant N‐acetyl‐cysteine and replenishment of NAD+ by providing nicotinamide reduce ROS levels in Mtb‐infected macrophages, protect them from cell death, and restrict mycobacterial replication. Our results indicate that a host‐directed therapy combining replenishment of NAD+ with inhibition of necroptosis and/or antioxidants might improve the health status of TB patients and augment antibacterial TB chemotherapy.  相似文献   

20.
Macrophage death in advanced atherosclerotic lesions leads to lesional necrosis and possibly plaque rupture and acute vascular occlusion. Among the likely causes of lesional macrophage death is intracellular accumulation of excess free cholesterol (FC), which is known to occur in vivo. We recently showed that FC loading of macrophages causes apoptosis, approximately 50% of which is mediated by activation of cell-surface FasL and triggering of the Fas pathway (Yao, P. M., and Tabas, I. (2000) J. Biol. Chem. 275, 23807-23813). To elucidate other pathways of death in FC-loaded macrophages, we investigated mitochondrial transmembrane potential (DeltaPsi(m)) and the mitochondrial apoptosis pathway in FC-loaded mouse peritoneal macrophages. Starting between 3 and 6 h of FC loading, DeltaPsi(m) was markedly decreased in the majority of macrophages and was independent of the Fas pathway. The decrease in DeltaPsi(m) by FC loading was not prevented by GSH, thus distinguishing it from 7-ketocholesterol-induced mitochondrial dysfunction. Cytochrome c release into the cytosol was noted by 4 h of FC loading, and activation of caspase-9 and effector caspases was observed at 6 h. Finally, we found that both cellular and mitochondrial levels of the pro-apoptotic protein Bax were increased severalfold as early as 4 h after FC loading. Thus, FC loading, perhaps via increased levels of Bax and/or cholesterol overloading of mitochondria, triggers cytochrome c release and activation of caspase-9 and the effector caspases, leading to macrophage apoptosis. These findings and our previous data support a model in which FC loading of macrophages promotes a dual program of caspase-mediated death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号