首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Wu D  Li G  Qin C  Ren X 《PloS one》2011,6(8):e23058
The purpose of the current study was to identify potential ligands and develop a novel diagnostic test to highly pathogenic avian influenza A virus (HPAI), subtype H5N1 viruses using phage display technology. The H5N1 viruses were used as an immobilized target in a biopanning process using a 12-mer phage display random peptide library. After five rounds of panning, three phages expressing peptides HAWDPIPARDPF, AAWHLIVALAPN or ATSHLHVRLPSK had a specific binding activity to H5N1 viruses were isolated. Putative binding motifs to H5N1 viruses were identified by DNA sequencing. In terms of the minimum quantity of viruses, the phage-based ELISA was better than antiserum-based ELISA and a manual, semi-quantitative endpoint RT-PCR for detecting H5N1 viruses. More importantly, the selected phages bearing the specific peptides to H5N1 viruses were capable of differentiating this virus from other avian viruses in enzyme-linked immunosorbent assays.  相似文献   

2.
以粒细胞巨噬细胞集落刺激因子(GMCSF) 为筛选文库的靶分子, 通过高效筛选(High throughputscreening, HTS) 方法来筛选多种多肽噬菌体文库, 在一个以噬菌体主要蛋白质为载体的多肽噬菌体文库中筛选到了一些与GMCSF结合的多肽, 并通过了ELISA和微淘选(micropanning) 实验的证实。这些多肽先导化合物经过进一步的优化, 可能成为GMCSF细胞因子的拮抗剂  相似文献   

3.
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools.  相似文献   

4.
人源单克隆抗人免疫缺陷病毒1型抗体Fab段基因的获得   总被引:1,自引:0,他引:1  
应用噬苏体抗体库技术有效地筛选出了多株抗HIV-1人源单克隆抗体。以逆转录聚合酶链反应(RT-PCR)从HIV-1感染者外周血淋巴细胞中扩增抗体轻重链可变区基因,插入载体pCOMB3,建立噬菌体抗体库。分别以HIV-1gp120和gp160为固相抗原,经过多轮筛选,从中获得了多株抗HIV-1gp41、gp120和gp160的单克隆抗体Fab段基因。抗HIV特异性噬菌体抗体随抗体库的筛选高度富集,抗  相似文献   

5.
A potential method for identifying new tumor-specific antibody structures as well as tumor-associated antigens is by selecting scFv phage libraries on tumor cells. This phage display technique involves multiple rounds of phage binding to target cells, washing to remove non-specific phage and elution to retrieve specific binding phage. Although the binding properties of an isolated tumor-specific scFv can be evaluated by ELISA, FACS and immunohistochemistry, it still remains a challenge to define the corresponding antigen. Here, we provide evidence that the target antigen of a given scFv displayed on phages can be detected in an immobilized lambda phage cDNA expression library containing thousands of irrelevant clones. The library contained CD30-negative breast-cancer specific cDNA as well as human CD30 receptor cDNA. The interaction of anti-CD30 scFv phages and their target antigen after blotting onto nitrocellulose filters was documented under defined conditions. Screening of different ratios between CD30 receptor and breast cancer specific clones (1:1 and 1:200) revealed that the CD30 antigen could be detected by anti-CD30 scFv phages using at least 5x10(12) plaque forming units of filamentous phages per blot. These investigations demonstrate that it is possible to detect the target antigen of a preselected scFv displayed on filamentous phages in lambda phage cDNA expression libraries.  相似文献   

6.
We have developed a sensitive and inexpensive opto-fluidic ring resonator (OFRR) biosensor using phage as a receptor for analyte detection. Phages have distinct advantages over antibodies as biosensor receptors. First, affinity selection from large libraries of random peptides displayed on phage provides a generic method of discovering receptors for detecting a wide range of analytes with high specificity and sensitivity. Second, phage production can be less complicated and less expensive than antibody production. Third, phages withstand harsh environments, reducing the environmental limitations and enabling regeneration of the biosensor surface. In this work, filamentous phage R5C2, displaying peptides that bind streptavidin specifically, was employed as a model receptor to demonstrate the feasibility of a phage-based OFRR biosensor. The experimental detection limit was approximately 100pM streptavidin and the K(d(apparent)) is 25pM. Specificity was verified using the RAP 5 phage, which is not specific to streptavidin, as the negative control. Sensing surface regeneration results show that the phage maintained functionality after surface regeneration, which greatly improves the sensors' reusability. The phage-based OFRR biosensor will become a promising platform for universal biomolecule detection with high sensitivity, low cost, and good reusability.  相似文献   

7.
Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase.  相似文献   

8.
Phage display is a useful means of identifying and selecting proteins of interest that bind specific targets. In order to examine the potential of phage display for the genome-wide screening of DNA-binding proteins, we constructed yeast genomic libraries using lambda foo-based vectors devised in this work. After affinity selection using GAL4 UAS(G) as a probe, phages expressing GAL4 were enriched approximately 5 x 10(5)-fold from the library. Approximately 90% of polypeptides encoded in correct translation reading frames by the selected phages were known or putative polynucleotide-binding proteins. This result clearly indicates that the modified lambda phage display vector in combination with our enrichment technique has great potential for the enrichment of DNA-binding proteins in a sequence-specific manner.  相似文献   

9.
A phage display-based bifunctional display system was developed for simple and sensitive immunoassay. The resulting bifunctional phage could simultaneously display a few single-chain variable fragment (ScFv) and many copies of the gold-binding peptide on its surface, thereby mediating antigen recognition and signal amplification. As a demonstration study, it was possible for bifunctional phage-based immunoassay to identify Bacillus anthracis spores from other Bacillus strains with detection sensitivity 10-fold higher than that of conventional phage enzyme-linked immunosorbent assay (ELISA). This protocol may be applied to build other bifunctional phage clones for broad applications (e.g., immunoassay kits, affinity biosensors, biorecognition assays).  相似文献   

10.
Phage display has emerged as a powerful technique for mapping epitopes recognised by monoclonal and polyclonal antibodies. We have recently developed a simple gene-fragment phage display system and have shown its utility in mapping epitope recognised by a monoclonal antibody. In the present study, we have employed this system in mapping epitopes recognised by polyclonal antibodies raised against HIV-1 capsid protein, p24 which is derived from proteolytic cleavage of Gag polyprotein. HIV-1 gag DNA was fragmented by DNase I and the fragments (50–250 bp) were cloned into gene-fragment phage display vector to construct a library of phages displaying peptides. This phage library was used for affinity selection of phages displaying epitopes recognised by rabbit anti-p24 polyclonal antibodies. Selected phages contained sequences from two discrete regions of p24, demonstrating the presence of two antigenic regions.

The DNA sequences encoding these regions were also cloned and expressed as GST fusion proteins. The immunoreactivity of these epitopes as GST fusion proteins, or as phage-displayed peptides, was comparable in ELISA system using same anti-p24 polyclonal antibodies. The results indicate that the gene-fragment based phage display system can be used efficiently to identify epitopes recognised by polyclonal antibodies, and phage displayed epitopes can be directly employed in ELISA to detect antibodies.  相似文献   

11.
Phage display has emerged as a powerful technique for mapping epitopes recognised by monoclonal and polyclonal antibodies. We have recently developed a simple gene-fragment phage display system and have shown its utility in mapping epitope recognised by a monoclonal antibody. In the present study, we have employed this system in mapping epitopes recognised by polyclonal antibodies raised against HIV-1 capsid protein, p24 which is derived from proteolytic cleavage of Gag polyprotein. HIV-1 gag DNA was fragmented by DNase I and the fragments (50-250 bp) were cloned into gene-fragment phage display vector to construct a library of phages displaying peptides. This phage library was used for affinity selection of phages displaying epitopes recognised by rabbit anti-p24 polyclonal antibodies. Selected phages contained sequences from two discrete regions of p24, demonstrating the presence of two antigenic regions. The DNA sequences encoding these regions were also cloned and expressed as GST fusion proteins. The immunoreactivity of these epitopes as GST fusion proteins, or as phage-displayed peptides, was comparable in ELISA system using same anti-p24 polyclonal antibodies. The results indicate that the gene-fragment based phage display system can be used efficiently to identify epitopes recognised by polyclonal antibodies, and phage displayed epitopes can be directly employed in ELISA to detect antibodies.  相似文献   

12.
Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages, one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of mice bearing palpable B16-F10 or B16/A2Kb tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific phages and lead to delayed tumor growth and increased survival. In B16/A2Kb tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50% of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and IFN-γ as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction of Th1 cytokines.  相似文献   

13.
噬菌体抗体库的构建及抗乳腺癌细胞单链抗体的筛选   总被引:3,自引:0,他引:3  
构建抗人乳腺癌细胞MCF 7的噬菌体单链抗体库 ,从中筛选MCF 7细胞特异性单链抗体。用MCF-7细胞免疫BALB C小鼠 ,取脾脏 ,提取总RNA ,用RT-PCR技术扩增小鼠抗体重链 (VH)和轻链 (VL)可变区基因 ,经重叠PCR(SOE-PCR) ,在体外将VH和VL连接成单链抗体 (scFv)基因 ,并克隆到噬菌粒载体pCANTAB5E中 ,电转化至大肠杆菌TG1,经辅助噬菌体超感染 ,构建噬菌体单链抗体库。从该抗体库中筛选特异性识别MCF-7细胞的噬菌体单链抗体 ,将表面展示单链抗体的单克隆噬菌体转化大肠杆菌TOP10进行可溶性表达。成功地构建了库容为12×106 的抗MCF-7乳腺癌细胞的单链抗体库 ,初步筛选到了与MCF 7细胞特异性结合的scFv,Westernblot检测表明 ,在大肠杆菌TOP10中实现了单链抗体可溶性表达  相似文献   

14.
Phage display technology has been used as a powerful tool in the discovery of ligands specific to receptor(s) on the surface of a cancer cell and could also impact clinical issues including functional diagnosis and cell-specific drug delivery. After three rounds of in vitro panning and two rounds of reverse absorption, a group of phages capable of addressing BEL-7402 enormously were obtained for further analysis. Through a cell-based ELISA, immunofluorescence, FACS, and in vivo binding study, WP05 (sequence TACHQHVRMVRP) was demonstrated to be the most effective peptide in targeting four kinds of liver cancer cell lines (BEL-7402, BEL-7404, SMMC-7721, and HepG2), but not the normal liver cell line HL-7702. In conclusion, the peptide WP05 which was screened by in vitro phage display technology was proved to be a targeting peptide to several common hepatocellular carcinoma cell lines.  相似文献   

15.
Binding of HIV-1 gp120 to T-cell receptor CD4 initiates conformational changes in the viral envelope that trigger viral entry into host cells. Phage epitope randomization of a beta-turn loop of a charybdotoxin-based miniprotein scaffold was used to identify peptides that can bind gp120 and block the gp120-CD4 interaction. We describe here the display of the charybdotoxin scaffold on the filamentous phage fUSE5, its use to construct a beta-turn library, and miniprotein sequences identified through library panning with immobilized Env gp120. Competition enzyme-linked immunosorbent assay (ELISA) identified high-frequency phage selectants for which specific gp120 binding was competed by sCD4. Several of these selectants contain hydrophobic residues in place of the Phe that occurs in the gp120-binding beta-turns of both CD4 and previously identified scorpion toxin CD4 mimetics. One of these selectants, denoted TXM[24GQTL27], contains GQTL in place of the CD4 beta-turn sequence 40QGSF43. TXM[24GQTL27] peptide was prepared using solid-phase chemical synthesis, its binding to gp120 demonstrated by optical biosensor kinetics analysis and its affinity for the CD4 binding site of gp120 confirmed by competition ELISA. The results demonstrate that aromatic-less loop-containing CD4 recognition mimetics can be formed with detectable envelope protein binding within a beta-turn of the charybdotoxin miniprotein scaffold. The results of this work establish a methodology for phage display of a charybdotoxin miniprotein scaffold and point to the potential value of phage-based epitope randomization of this miniprotein for identifying novel CD4 mimetics. The latter are potentially useful in deconvoluting structural determinants of CD4-HIV envelope recognition and possibly in designing antagonists of viral entry.  相似文献   

16.
丁艳丽  韩威  沈琼  刘惠  杨胜利  龚毅 《遗传》2006,28(2):208-211
用B淋巴细胞刺激因子(BLyS)对噬菌体随机12肽库进行亲和淘洗,3轮筛选后阳性噬菌体得到富集。用ELISA鉴定噬菌体克隆,多个阳性克隆测序后得到了同一个小肽序列(RHKIQLRQNIIT)。将该小肽与GST融合,在大肠杆菌中进行表达及纯化,ELISA实验进一步验证了其具有与BLyS特异结合的活性。该小肽有可能成为其天然受体的拮抗剂。   相似文献   

17.
We describe a novel approach for high-throughput analysis of the immune response in cancer patients using phage-based microarray technology. The recombinant phages used for fabricating phage arrays were initially selected via the use of random peptide phage libraries and breast cancer patient serum antibodies. The peptides displayed by the phages retained their ability to be recognized by serum antibodies after immobilization. The recombinant phage microarrays were screened against either breast cancer or healthy donor serum antibodies. A model-based statistical method is proposed to estimate significant differences in serum antibody reactivity between patients and normals. A significant tumor effect was found with most of the selected phage-displayed peptides, suggesting that recombinant phage microarrays can serve as a tool in monitoring humoral responses towards phage-displayed peptides.  相似文献   

18.
Somers K  Stinissen P  Somers V 《Proteomics》2011,11(12):2550-2554
Phage display is a high-throughput technology used to identify ligands for a given target. A drawback of the approach is the absence of PTMs in phage-displayed peptides. The applicability of phage display could be broadened considerably by the implementation of PTMs in this system. The aim of this study was to investigate the possible application of citrullination, a PTM of an arginine into a citrulline amino acid, in filamentous (M13) and lytic (T7) phage display. After in vitro citrullination of T7 and M13 phages, citrullination was confirmed and the infectivity of both citrullinated and non-citrullinated phage was compared by titer determination. We demonstrated the successful in vitro citrullination of T7 and M13 phage-displayed peptides. This in vitro modification did not affect the viability or infectivity of the T7 virions, a necessary prerequisite for the implementation of this approach in T7 phage display. For M13 phage, however, the infecting phage titer decreased five-fold upon citrullination, limiting the use of this modification in M13 phage display. In conclusion, in vitro citrullination can be applied in T7 phage display giving rise to a high-throughput and sensitive approach to identify citrulline-containing ligands by the use of the strengths of phage display technology.  相似文献   

19.
A collection of 15 newly isolated (bacterio)phages infecting the opportunistic pathogen Pseudomonas aeruginosa was established to investigate their global diversity and potential in phage therapy. These phages were sampled in 14 different countries traversing four continents, from both natural environments and hospital sewage. They all display unique DNA and protein profiles and cluster morphologically into six groups within the three major families of the Caudovirales . Extensive host range studies on a library of 122 AFLP-genotyped clinical P. aeruginosa strains (of which 49 were newly isolated at the University Hospital of Leuven, Belgium) showed that the phages lysed 87% of the strains. Infection analysis of outer membrane mutants identified 10 phages as type IV pili-dependent. More detailed information about the evolutionary relatedness of the phages was gathered by de novo peptide sequencing of major virion proteins using tandem Matrix-Assisted Laser Desorption/Ionization Time of Flight technology. Applying this technique for the first time to viruses, seven groups of closely related phages were identified without the need of prior knowledge of genome content and/or electron microscopic imaging. This study demonstrates both the epidemic population structure of P. aeruginosa and the global spread of P. aeruginosa phage species, and points at the resistance of two clinically predominant, widespread P. aeruginosa strains against phage attack.  相似文献   

20.
Rahim A  Coutelle C  Harbottle R 《BioTechniques》2003,35(2):317-20, 322, 324
Gene therapy clinical trials have highlighted the importance of specific cellular/tissue targeting of gene delivery vectors. Phage display libraries are powerful tools for the selection of novel peptide ligands as targeting moieties because of their high-throughput screening potential. However, a severe rate-limiting step in this procedure in terms of time, numbers, and cost is the sequence identification of selected phages. Here we describe the application of Pyrosequencing technology for sequencing phage isolates after panning a random 7-mer peptide expressing phage library against the A549 bronchial epithelial cell line to search for enrichment of possible targeting peptides. Pyrosequencing allows sequencing of 96 phages at one time in approximately 45 min at only a sixth of the cost of conventional sequencing methods. Using this technology, we have identified four sequences of interest. A phage binding assay revealed that three of the four sequences show a significant increase in binding abilities and specificity for A549 cells when compared to an unrelated cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号