首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Human noroviruses (HuNoVs) are the major cause of epidemic, nonbacterial gastroenteritis worldwide. Due to the lack of a tractable model system and the inability to grow HuNoVs in cell culture, factors required for the norovirus (NoV) life cycle and pathogenesis in the host remain largely unknown. The discovery of murine norovirus (MNV) and the development of reverse-genetics systems for this virus provide an opportunity to study these aspects of NoV infection in vitro and in vivo. Previous studies identified a single amino acid at residue 296 in the protruding (P) domain of the capsid protein that is responsible for determining the virulence of the MNV clone MNV1.CW1 in 12956/SvEv background STAT1-deficient (STAT1(-/-)) mice. In this report, we identified and characterized another determinant of lethality in the P domain that is necessary and sufficient to determine the replication and pathogenesis of the MNV clones MNV1.CW3 and CR6.STL1 in C57BL/6 background STAT1(-/-) mice. Furthermore, we describe how the role of residue 296 in MNV virulence differs between STAT1(-/-) mouse strains. We also describe potential interactions between subdomains of the P domain, as well as between other virus elements, which facilitate recovery of MNV using a reverse-genetics system.  相似文献   

4.
A series of human adenovirus type 5 derivatives carrying deletion mutations in early region 4 (E4) were constructed and characterized with respect to viral late protein synthesis, viral cytoplasmic late message accumulation, viral DNA accumulation, and plaquing ability. Viral late protein synthesis was essentially normal in cells infected by mutants expected to produce either the E4 open reading frame (ORF) 3 product or the E4 ORF 6 product. In cells infected by mutants lacking both ORF 3 and ORF 6, late protein synthesis was dramatically reduced. The basis for this reduction appears to be a concomitant reduction in cytoplasmic late message levels. Our results suggest that the products of ORFs 3 and 6 are redundant, since they are individually able to satisfy the requirement for E4 in late gene expression. Two of the mutants examined were defective for viral late protein synthesis but showed no measurable defect in viral DNA accumulation. The defect in late gene expression is not, therefore, a reflection of a primary defect in viral DNA synthesis. Finally, mutants expected to express ORF 3 or ORF 6 formed plaques with normal or only modestly reduced efficiency, whereas mutants expected to express neither ORF formed plaques with an efficiency less than 10(-6) that of wild-type virus. Thus, plaque-forming ability reflected late protein synthetic ability, suggesting that among these mutants late protein synthetic proficiency is the principle determinant of plaquing efficiency.  相似文献   

5.
Murine noroviruses are a recently discovered group of viruses found within mouse research colonies in many animal facilities worldwide. In this study, we used 2 novel mouse norovirus (MNV) wildtype isolates to examine the kinetics of transmission and tissue distribution in breeding units of NOD.CB17-Prkdcscid/J and backcrossed NOD.CB17-Prkdcscid/J × NOD/ShiLtJ (N1) mice. Viral shedding in feces and dissemination to tissues of infected offspring mice were monitored by RT-PCR over a 6-wk period postpartum. Histologic sections of tissues from mice exposed to MNV were examined for lesions and their sera monitored for the presence of antibodies to MNV. Viruses shed in feces of parental and offspring mice were compared for sequence homology of the Orf2 gene. Studies showed that the wildtype viruses MNV5 and MNV6 behaved differently in terms of the kinetics of transmission and distribution to tissues of offspring mice. For MNV5, virus transmission from parents to offspring was not seen before 3 wk after birth, and neither isolate was transmitted between cages of infected and control mice. Susceptibility to infection was statistically different between the 2 mouse strains used in the study. Both immunodeficient NOD.CB17-Prkdcscid/J mice and NOD.CB17-Prkdcscid/J × NOD/ShiLtJ offspring capable of mounting an immune response shed virus in their feces throughout the 6-wk study period, but no gross or histologic lesions were present in infected tissues. Progeny viruses isolated from the feces of infected offspring showed numerous mutations in the Orf2 gene for MNV5 but not MNV6. These results confirm previous studies demonstrating that the biology of MNV in mice varies substantially with each virus isolate and mouse strain infected.Abbreviations: MNV, murine norovirus; MLN, mesenteric lymph nodes; NOD-scid, NOD.CB17-Prkdcscid/J; VP1, viral protein 1The recent discovery of murine-specific noroviruses15 has stimulated concern in the laboratory animal health community regarding the potential for this group of viruses to cause disease in breeding colonies of mice or to negatively impact research with mice from norovirus infected colonies. Current knowledge of the biology of noroviruses in mice (MNV) is constrained by the limited number of virus isolates and mouse strains studied. One study15described the biologic and physicochemical properties of the original MNV1 isolated from mice deficient in a specific innate immune function. More recently, this innate immune deficiency has been mapped to STAT1 regulation of IFNαβ secretion.21Previous work15 demonstrated that inoculation of MNV1 into mouse strains deficient in the acquired immune response (129 RAG 2−/−, B6 RAG1−/−) resulted in the development of persistent infections with no evidence of disease, whereas inoculation of fully immunocompetent mice (129S6/SvEvTac) resulted in rapid elimination of MNV1, with viral RNA undetectable in the viscera by 3 d after inoculation. More recently, infections of outbred immunocompetent mouse strains with 3 wildtype isolates of MNV obtained from different geographic areas of the United States have been described.11 Virus was detected in the feces and tissue of infected mice throughout the 8-wk study, suggesting that some isolates of MNV may persistently infect immunocompetent mice.The purpose of the present investigation was to extend the current knowledge of MNV by using 2 isolates of the virus in mouse strains that have not been previously used as infection models for MNV. We examined natural virus transmission from infected breeders to offspring, kinetics of infection within litters of infected breeding mice, and the pathogenesis of infection in breeding colonies of mice. In addition, we examined the effect of virus passage from parents to offspring on genomic stability of these 2 viral isolates. Exposure of offspring of immunodeficient mice and immunocompetent mice to the 2 different isolates of MNV resulted in different patterns of virus transmission, susceptibility to infection and kinetics of infection as shown by the progressive spread of virus within litters and in intestinal and extraintestinal tissues. MNV was shed persistently in the feces of all mice tested regardless of immune status, and viral progeny isolated from offspring mice contained genome sequence differences from the parent virus in the Orf2 gene, an area of the MNV genome known to be susceptible to mutations.  相似文献   

6.
To investigate the role of varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase during infection, a VZV mutant was generated in which two contiguous stop codons were introduced into ORF47, thus eliminating expression of the ORF47 kinase. ORF47 kinase was not essential for the growth of VZV in cultured cells, and the growth rate of the VZV mutant lacking ORF47 protein was indistinguishable from that of parental VZV. Nuclear extracts from cells infected with parental VZV contained several phosphorylated proteins which were not detected in extracts from cells infected with the ORF47 mutant. The herpes simplex virus type 1 (HSV-1) UL13 protein (the homolog of VZV ORF47 protein) is responsible for the posttranslational processing associated with phosphorylation of HSV-1 ICP22 (the homolog of VZV ORF63 protein). Immunoprecipitation of 32P-labeled proteins from cells infected with parental virus and those infected with ORF47 mutant virus yielded similar amounts of the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 (VZV gE), and the electrophoretic migration of these proteins was not affected by the lack of ORF47 kinase. Therefore, while the VZV ORF47 protein is capable of phosphorylating several cellular or viral proteins, it is not required for phosphorylation of the ORF63 protein in virus-infected cells.  相似文献   

7.
Henderson KS 《Lab animal》2008,37(7):314-320
Murine norovirus (MNV), a recently discovered viral agent of laboratory mice, is closely related to human norovirus, a contagious pathogen known to cause gastroenteritis. The prototype strain of MNV (MNV-1) was first isolated and characterized in 2003 as a sporadic, lethal pathogen in certain strains of immunocompromised knockout mice. Serological surveillance data from mouse colonies throughout the US and Canada have since shown that MNV is highly prevalent. Because MNV is unique among norovirus strains in its ability to replicate in cell culture, it serves as the most accessible model to elucidate the mechanisms of infection and replication of human norovirus. The author discusses the genetic diversity of MNV, its prevalence, pathology and potential research implications, as well as techniques for detection and eradication of this virus.  相似文献   

8.
J B Moore  G L Smith 《The EMBO journal》1992,11(5):1973-1980
Vaccinia virus open reading frame (ORF) SalF7L has 31% amino acid identity to human 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD). Here we show that SalF7L encodes an active 3 beta-HSD, by the conversion of pregnenolone to the steroid hormone progesterone. The gene is transcribed early during infection into a 1.4 kb mRNA from an initiation site 12 bp upstream of the ORF. An antiserum raised against bacterially expressed SalF7L immunoprecipitated a 38 kDa polypeptide from infected cells, but not from mock infected cells or from cells infected with a mutant virus from which the SalF7L ORF had been removed. Deletion of the gene had no effect on virus replication in CV-1 cells in culture, yet the deletion mutant was attenuated when intranasally inoculated into mice. This steroid hormone synthesizing enzyme is a novel type of virus virulence factor.  相似文献   

9.
Viruses within the genus Norovirus of the family Caliciviridae are the major cause of acute, nonbacterial gastroenteritis worldwide. Human noroviruses are genetically diverse, with up to 57% divergence in capsid protein sequences, and comprise three genogroups. The significance of such genetic diversity is not yet understood. The discovery of murine norovirus (MNV) and its ability to productively infect cultured murine macrophages and dendritic cells has provided an opportunity to determine the functional consequences of norovirus diversity in vitro and in vivo. Therefore, we compared the full-length genomes of 21 new MNV isolates with five previously sequenced MNV genomes and demonstrated a conserved genomic organization consisting of four open reading frames (ORFs) and a previously unknown region of nucleotide conservation in ORF2. A phylogenetic analysis of all 26 MNV genomes revealed 15 distinct MNV strains, with up to 13% divergence at the nucleotide level, that comprise a single genotype and genogroup. Evidence for recombination within ORF2 in several MNV genomes was detected by multiple methods. Serological analyses comparing neutralizing antibody responses between highly divergent strains suggested that the MNV genogroup comprises a single serotype. Within this single genogroup, MNV strains exhibited considerable biological diversity in their ability to grow in culture and to infect and/or persist in wild-type mice. The isolation and characterization of multiple MNV strains illustrate how genetic analysis may underestimate the biological diversity of noroviruses and provide a molecular map for future studies of MNV biology.  相似文献   

10.
Open reading frame 73 (ORF 73) is conserved among the gamma-2-herpesviruses (rhadinoviruses) and, in Kaposi's sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS), has been shown to encode a latency-associated nuclear antigen (LANA). The KSHV and HVS LANAs have also been shown to be required for maintenance of the viral genome as an episome during latency. LANA binds both the viral latency-associated origin of replication and the host cell chromosome, thereby ensuring efficient partitioning of viral genomes to daughter cells during mitosis of a latently infected cell. In gammaherpesvirus 68 (gammaHV68), the role of the LANA homolog in viral infection has not been analyzed. Here we report the construction of a gammaHV68 mutant containing a translation termination codon in the LANA ORF (73.STOP). The 73.STOP mutant virus replicated normally in vitro, in both proliferating and quiescent murine fibroblasts. In addition, there was no difference between wild-type (WT) and 73.STOP virus in the kinetics of induction of lethality in mice lacking B and T cells (Rag 1(-/-)) infected with 1000 PFU of virus. However, compared to WT virus, the 73.STOP mutant exhibited delayed kinetics of replication in the lungs of immunocompetent C57BL/6 mice. In addition, the 73.STOP mutant exhibited a severe defect in the establishment of latency in the spleen of C57BL/6 mice. Increasing the inoculum of 73.STOP virus partially overcame the acute replication defected observed in the lungs at day 4 postinfection but did not ameliorate the severe defect in the establishment of splenic latency. Thus, consistent with its proposed role in replication of the latent viral episome, LANA appears to be a critical determinant in the establishment of gammaHV68 latency in the spleen post-intranasal infection.  相似文献   

11.
We established a reverse genetics system for Nyamanini virus (NYMV) and recovered green fluorescent protein (GFP)-expressing virus from full-length cDNA. Using this technology, we assessed the functions of two poorly characterized viral genes. NYMV lacking open reading frame 2 (ORF2) could not be rescued, whereas virus lacking ORF4 was replication competent. ORF4-deficient NYMV readily established a persisting noncytolytic infection but failed to produce infectious viral particles, supporting the view that ORF4 represents an essential factor for NYMV particle assembly.  相似文献   

12.
Supernatants from vaccinia virus (VV)-infected CV-1 cells were examined and found to contain a 33 kd protein capable of binding murine interleukin-1 beta (mIL-1 beta). A VV open reading frame (ORF) that exhibits 30% amino acid identity to the type II IL-1 receptor was expressed in CV-1-EBNA cells and shown specifically to bind mIL-1 beta. A similar ORF from cowpox virus was expressed and also specifically bound mIL-1 beta. A recombinant VV was constructed in which this ORF was disrupted (vB15RKO). Supernatants from vB15RKO-infected cells did not contain an IL-1-binding protein. Supernatants from VV-infected CV-1 cells were capable of inhibiting IL-1-induced murine lymphocyte proliferation in vitro while supernatants from vB15RKO infected cells did not. Intracranial inoculation of mice with vB15RKO suggests that this ORF is involved in VV virulence. The possible role of a virus-encoded IL-1-binding protein in the pathology of a poxvirus infection and its relationship to other poxvirus-encoded immune modulators is discussed.  相似文献   

13.
Murine norovirus (MNV), a prevalent pathogen of laboratory mice, shares many characteristics with human noroviruses. Previous results indicated that passage of MNV1 in the macrophage cell line RAW 264.7 results in attenuation in STAT1-deficient mice (C. E. Wobus, S. M. Karst, L. B. Thackray, K. O. Chang, S. V. Sosnovtsev, G. Belliot, A. Krug, J. M. Mackenzie, K. Y. Green, and H. W. Virgin, PLoS. Biol. 2:e432, 2004). Sequence analysis revealed two amino acid differences between the virulent and attenuated viruses. Using an infectious cDNA clone of the attenuated virus, we demonstrated that a glutamate-to-lysine substitution at position 296 in the capsid protein (VP1) is sufficient to restore virulence in vivo, identifying, for the first time, a virus-encoded molecular determinant of norovirus virulence.  相似文献   

14.
15.
Human metapneumovirus (hMPV) is a major cause of upper and lower respiratory infections in children and adults. Recent work from our group demonstrated that hMPV G glycoprotein is an important virulence factor, responsible for inhibiting innate immune responses in airway epithelial cells. Myeloid dendritic cells (DCs) are potent APCs and play a major role in initiating and modulating the innate and adaptive immune responses. In this study, we found that TLR4 plays a major role in hMPV-induced activation of monocyte-derived DCs (moDCs), as downregulation of its expression by small interfering RNA significantly blocked hMPV-induced chemokine and type I IFN expression. Similar results were found in bone marrow-derived DCs from TLR4-deficient mice. moDCs infected with a virus lacking G protein expression produced higher levels of cytokines and chemokines compared with cells infected with wild-type virus, suggesting that G protein plays an inhibitory role in viral-induced cellular responses. Specifically, G protein affects TLR4-dependent signaling, as infection of moDCs with recombinant hMPV lacking G protein inhibited LPS-induced production of cytokine and chemokines significantly less than did wild-type virus, and treatment of moDCs with purified G protein resulted in a similar inhibition of LPS-dependent signaling. Our results demonstrate that hMPV G protein plays an important role in inhibiting host innate immune responses, likely affecting adaptive responses too.  相似文献   

16.
17.
Human noroviruses cause more than 90% of epidemic nonbacterial gastroenteritis. However, the role of B cells and antibody in the immune response to noroviruses is unclear. Previous studies have demonstrated that human norovirus specific antibody levels increase upon infection, but they may not be protective against infection. In this report, we used murine norovirus (MNV), an enteric norovirus, as a model to determine the importance of norovirus specific B cells and immune antibody in clearance of norovirus infection. We show here that mice genetically deficient in B cells failed to clear primary MNV infection as effectively as wild-type mice. In addition, adoptively transferred immune splenocytes derived from B-cell-deficient mice or antibody production-deficient mice were unable to efficiently clear persistent MNV infection in RAG1(-/-) mice. Further, adoptive transfer of either polyclonal anti-MNV serum or neutralizing anti-MNV monoclonal antibodies was sufficient to reduce the level of MNV infection both systemically and in the intestine. Together, these data demonstrate that antibody plays an important role in the clearance of MNV and that immunoglobulin G anti-norovirus antibody can play an important role in clearing mucosal infection.  相似文献   

18.
Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1–7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo.  相似文献   

19.
Norovirus (NV) gastroenteritis is a major contributor to global morbidity and mortality, yet little is known about immune mechanisms leading to NV control. Previous studies using the murine norovirus (MNV) model have established a key role for T cells in MNV clearance. Despite these advances, important questions remain regarding the magnitude, location, and dynamics of the MNV-specific T cell response. To address these questions, we identified MNV-specific major histocompatibility complex (MHC) class I immunodominant epitopes using an overlapping peptide screen. One of these epitopes (amino acids 519 to 527 of open reading frame 2 [ORF2519-527]) was highly conserved among all NV genogroups. Using MHC class I peptide tetramers, we tracked MNV-specific CD8 T cells in lymphoid and mucosal sites during infection with two MNV strains with distinct biological behaviors, the acutely cleared strain CW3 and the persistent strain CR6. Here, we show that enteric MNV infection elicited robust T cell responses primarily in the intestinal mucosa and that MNV-specific CD8 T cells dynamically regulated the expression of surface molecules associated with activation, differentiation, and homing. Furthermore, compared to MNV-CW3 infection, chronic infection with MNV-CR6 resulted in fewer and less-functional CD8 T cells, and this difference was evident as early as day 8 postinfection. Finally, MNV-specific CD8 T cells were capable of reducing the viral load in persistently infected Rag1−/− mice, suggesting that these cells are a crucial component of NV immunity. Collectively, these data provide fundamental new insights into the adaptive immune response to two closely related NV strains with distinct biological behaviors and bring us closer to understanding the correlates of protective antiviral immunity in the intestine.  相似文献   

20.
PB1-F2 is an 87- to 90-amino-acid-long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts-pigs, humans, or birds-remains largely unknown. Outbreaks of domestic pigs infected with the 2009 pandemic H1N1 influenza virus (pH1N1) have been detected worldwide. Unlike previous pandemic strains, pH1N1 viruses do not encode a functional PB1-F2 due to the presence of three stop codons resulting in premature truncation after codon 11. However, pH1N1s have the potential to acquire the full-length form of PB1-F2 through mutation or reassortment. In this study, we assessed whether restoring the full-length PB1-F2 open reading frame (ORF) in the pH1N1 background would have an effect on virus replication and virulence in pigs. Restoring the PB1-F2 ORF resulted in upregulation of viral polymerase activity at early time points in vitro and enhanced virus yields in porcine respiratory explants and in the lungs of infected pigs. There was an increase in the severity of pneumonia in pigs infected with isogenic virus expressing PB1-F2 compared to the wild-type (WT) pH1N1. The extent of microscopic pneumonia correlated with increased pulmonary levels of alpha interferon and interleukin-1β in pigs infected with pH1N1 encoding a functional PB1-F2 but only early in the infection. Together, our results indicate that PB1-F2 in the context of pH1N1 moderately modulates viral replication, lung histopathology, and local cytokine response in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号