首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

It is known that mitochondria play an important role in certain cancers (prostate, renal, breast, or colorectal) and coronary disease. These organelles play an essential role in apoptosis and the production of reactive oxygen species; in addition, mtDNA also reveals the history of populations and ancient human migration. All these events and variations in the mitochondrial genome are thought to cause some cancers, including prostate cancer, and also help us to group individuals into common origin groups. The aim of the present study is to analyze the different haplogroups and variations in the sequence in the mitochondrial genome of a southern European population consisting of subjects affected (n = 239) and non-affected (n = 150) by sporadic prostate cancer.

Methodology and Principal Findings

Using primer extension analysis and DNA sequencing, we identified the nine major European haplogroups and CR polymorphisms. The frequencies of the haplogroups did not differ between patients and control cohorts, whereas the CR polymorphism T16356C was significantly higher in patients with PC compared to the controls (p = 0.029). PSA, staging, and Gleason score were associated with none of the nine major European haplogroups. The CR polymorphisms G16129A (p = 0.007) and T16224C (p = 0.022) were significantly associated with Gleason score, whereas T16311C (p = 0.046) was linked with T-stage.

Conclusions and Significance

Our results do not suggest that mtDNA haplogroups could be involved in sporadic prostate cancer etiology and pathogenesis as previous studies performed in middle Europe population. Although some significant associations have been obtained in studying CR polymorphisms, further studies should be performed to validate these results.  相似文献   

2.

Background

The pivotal role of mitochondria in energy production and free radical generation suggests that the mitochondrial genome could have an important influence on the expression of multifactorial age related diseases. Substitution of T to C at nucleotide position 16189 in the hypervariable D-loop of the control region (CR) of mitochondrial DNA (mtDNA) has attracted research interest because of its suspected association with various multifactorial diseases. The aim of the present study was to compare the frequency of this polymorphism in the CR of mtDNA in patients with coronary artery disease (CAD, n = 482) and type 2 diabetes mellitus (T2DM, n = 505) from two study centers, with healthy individuals (n = 1481) of Middle European descent in Austria.

Methodology and Principal Findings

CR polymorphisms and the nine major European haplogroups were identified by DNA sequencing and primer extension analysis, respectively. Frequencies and Odds Ratios for the association between cases and controls were calculated. Compared to healthy controls, the prevalence of T16189C was significantly higher in patients with CAD (11.8% vs 21.6%), as well as in patients with T2DM (11.8% vs 19.4%). The association of CAD, but not the one of T2DM, with T16189C remained highly significant after correction for age, sex and body mass index (BMI) and was independent of the two study centers.

Conclusions and Significance

Our results show for the first time a significant association of T16189C with CAD in a Middle European population. As reported in other studies, in patients with T2DM an association with T16189C in individuals of European decent remains questionable.  相似文献   

3.

Background

Besides being responsible for energy production in the cell, mitochondria are central players in apoptosis as well as the main source of harmful reactive oxygen species. Therefore, it can be hypothesised that sequence variation in the mitochondrial genome is a contributing factor to the etiology of diseases related to these different cellular events, including cancer. The aim of the present study was to assess the frequency of haplogroups and polymorphisms in the control region (CR) of mitochondrial DNA of peripheral blood mononuclear cells from patients with prostate carcinoma (n = 304) versus patients screened for prostate disease but found to be negative for cancer on biopsy (n = 278) in a Middle European population.

Methodology/Principal Findings

The nine major European haplogroups and the CR polymorphisms were identified by means of primer extension analysis and DNA sequencing, respectively. We found that mitochondrial haplogroup frequencies and CR polymorphisms do not differ significantly between patients with or without prostate cancer, implying no impact of inherited mitochondrial DNA variation on predisposition to prostate carcinoma in a Middle European population.

Conclusions/Significance

Our results contrast with a recent report claiming an association between mtDNA haplogroup U and prostate cancer in a North American population of caucasian descent.  相似文献   

4.

Background

Since mitochondria are the principal source of reactive oxygen species (ROS), these organelles may play an important role in ischemic cardiomyopathy (IC) development. The mitochondrial genome may influence this disease. The aim of the present study was to test the relationship between IC development and the impact of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) defining the mitochondrial haplogroups in a population study.

Methodology and principal findings

Ten major European haplogroups were identified by using the single base extension technique and by polymerase chain reaction-restriction fragment length polymorphism. Frequencies and Odds Ratios for the association between IC patients (n = 358) and healthy controls (n = 423) were calculated. No convincing associations between classical risk factors for ischemic cardiomyopathy development and haplogroups were found. However, compared to healthy controls, the prevalence of haplogroup H was significantly higher in IC patients (40.0% vs 50.0%, p-value  = 0.039) while the frequency of haplogroup J was significantly lower (11.1% vs 5.6%, p-value  = 0.048). The analysis of the SNPs characterizing the European mtDNA haplogroups showed that the m.7028C allele (40.0% vs 50.0%, p-value  = 0.005) and m.14766C allele (43.0% vs 54.2%, p-value  = 0.002) were overrepresented in IC patients, meanwhile the m.10398G allele (19.8% vs 13.1%, p-value  = 0.015) and m.4216C allele (22.2% vs 16.5%, p-value  = 0.044) were found as protective factors against IC.

Conclusions and significance

Our results showed that the haplogroups H and J were found as a risk and protective factors for ischemic cardiomyopathy development, respectively.  相似文献   

5.

Background

Onset and development of the multifactorial disease age-related macular degeneration (AMD) are highly interrelated with mitochondrial functions such as energy production and free radical turnover. Mitochondrial dysfunction and overproduction of reactive oxygen species may contribute to destruction of the retinal pigment epithelium, retinal atrophy and choroidal neovascularization, leading to AMD. Consequently, polymorphisms of the mitochondrial genome (mtDNA) are postulated to be susceptibility factors for this disease. Previous studies from Australia and the United States detected associations of mitochondrial haplogroups with AMD. The aim of the present study was to test these associations in Middle European Caucasians.

Methodology/Principal Findings

Mitochondrial haplogroups (combinations of mtDNA polymorphisms) and mitochondrial CR polymorphisms were analyzed in 200 patients with wet AMD (choroidal neovascularization, CNV), in 66 patients with dry AMD, and in 385 controls from Austria by means of multiplex primer extension analysis and sequencing, respectively. In patients with CNV, haplogroup H was found to be significantly less frequent compared to controls, and haplogroup J showed a trend toward a higher frequency compared to controls. Five CR polymorphisms were found to differ significantly in the two study populations compared to controls, and all, except one (T152C), are linked to those haplogroups.

Conclusions/Significance

It can be concluded that haplogroup J is a risk factor for AMD, whereas haplogroup H seems to be protective for AMD.  相似文献   

6.

Background

Recent publications have reported contradictory data regarding mitochondrial DNA (mtDNA) variation and its association with body mass index. The aim of the present study was to compare the frequencies of mtDNA haplogroups as well as control region (CR) polymorphisms of obese juveniles (n = 248) and obese adults (n = 1003) versus normal weight controls (njuvenile = 266, nadults = 595) in a well-defined, ethnically homogenous, age-matched comparative cohort of Austrian Caucasians.

Methodology and Principal Findings

Using SNP analysis and DNA sequencing, we identified the nine major European mitochondrial haplogroups and CR polymorphisms. Of these, only the T haplogroup frequency was increased in the juvenile obese cohort versus the control subjects [11.7% in obese vs. 6.4% in controls], although statistical significance was lost after adjustment for sex and age. Similar data were observed in a local adult cohort, in which haplogroup T was found at a significantly higher frequency in the overweight and obese subjects than in the normal weight group [9.7% vs. 6.2%, p = 0.012, adjusted for sex and age]. When all obese subjects were considered together, the difference in the frequency of haplogroup T was even more clearly seen [10.1% vs. 6.3%, p = 0.002, OR (95% CI) 1.71 (1.2–2.4), adjusted for sex and age]. The frequencies of the T haplogroup-linked CR polymorphisms C16294T and the C16296T were found to be elevated in both the juvenile and the adult obese cohort compared to the controls. Nevertheless, no mtDNA haplogroup or CR polymorphism was robustly associated with any of several investigated metabolic and cardiovascular parameters (e.g., blood pressure, blood glucose concentration, triglycerides, cholesterol) in all obese subjects.

Conclusions and Significance

By investigation of this large ethnically and geographically homogenous cohort of Middle European Caucasians, only mtDNA haplogroup T was identified as an obesity risk factor.  相似文献   

7.

Background

When domestic taurine cattle diffused from the Fertile Crescent, local wild aurochsen (Bos primigenius) were still numerous. Moreover, aurochsen and introduced cattle often coexisted for millennia, thus providing potential conditions not only for spontaneous interbreeding, but also for pastoralists to create secondary domestication centers involving local aurochs populations. Recent mitochondrial genomes analyses revealed that not all modern taurine mtDNAs belong to the shallow macro-haplogroup T of Near Eastern origin, as demonstrated by the detection of three branches (P, Q and R) radiating prior to the T node in the bovine phylogeny. These uncommon haplogroups represent excellent tools to evaluate if sporadic interbreeding or even additional events of cattle domestication occurred.

Methodology

The survey of the mitochondrial DNA (mtDNA) control-region variation of 1,747 bovine samples (1,128 new and 619 from previous studies) belonging to 37 European breeds allowed the identification of 16 novel non-T mtDNAs, which after complete genome sequencing were confirmed as members of haplogroups Q and R. These mtDNAs were then integrated in a phylogenetic tree encompassing all available P, Q and R complete mtDNA sequences.

Conclusions

Phylogenetic analyses of 28 mitochondrial genomes belonging to haplogroups P (N = 2), Q (N = 16) and R (N = 10) together with an extensive survey of all previously published mtDNA datasets revealed major similarities between haplogroups Q and T. Therefore, Q most likely represents an additional minor lineage domesticated in the Near East together with the founders of the T subhaplogroups. Whereas, haplogroup R is found, at least for the moment, only in Italy and nowhere else, either in modern or ancient samples, thus supporting an origin from European aurochsen. Haplogroup R could have been acquired through sporadic interbreeding of wild and domestic animals, but our data do not rule out the possibility of a local and secondary event of B. primigenius domestication in Italy.  相似文献   

8.

Background

MtDNA haplogroups could have important implication for understanding of the relationship between the mutations of the mitochondrial genome and diseases. Distribution of a variety of diseases among these haplogroups showed that some of the mitochondrial haplogroups are predisposed to disease. To examine the susceptibility of mtDNA haplogroups to ROU, we sequenced the mtDNA HV1, HV2 and HV3 in Chinese ROU.

Methodology/Principal Findings

MtDNA haplogroups were analyzed in the 249 cases of ROU patients and the 237 cases of healthy controls respectively by means of primer extension analysis and DNA sequencing. Haplogroups G1 and H were found significantly more abundant in ROU patients than in healthy persons, while haplogroups D5 and R showed a trend toward a higher frequency in control as compared to those in patients. The distribution of C-stretch sequences polymorphism in mtDNA HV1, HV2 and HV3 regions was found in diversity.

Conclusions/Significance

For the first time, the relationship of mtDNA haplogroups and ROU in Chinese was investigated. Our results indicated that mtDNA haplogroups G1 and H might constitute a risk factor for ROU, which possibly increasing the susceptibility of ROU. Meanwhile, haplogroups D5 and R were indicated as protective factors for ROU. The polymorphisms of C-stretch sequences might being unstable and influence the mtDNA replication fidelity.  相似文献   

9.

Introduction

Mitochondrial function influences T cell dynamics and is affected by mitochondrial DNA (mtDNA) variation. We previously reported an association between African mtDNA haplogroup L2 and less robust CD4 cell recovery on antiretroviral therapy (ART) in non-Hispanic black ACTG 384 subjects. We explored whether additional T cell parameters in this cohort differed by mtDNA haplogroup.

Methods

ACTG 384 randomized ART-naïve subjects to two different nucleoside regimens with efavirenz, nelfinavir, or both. CD4 and CD8 memory and activation markers were available at baseline and week 48 on most subjects. mtDNA sequencing was performed on whole blood DNA, and haplogroups were determined. We studied non-Hispanic black subjects with HIV RNA <400 copies/mL at week 48. Analyses included Wilcoxon ranksum test and linear regression.

Results

Data from 104 subjects were included. Major African mtDNA haplogroups included L1 (N = 25), L2 (N = 31), and L3 (N = 32). Baseline age, HIV RNA, and CD4 cells did not differ between L2 and non-L2 haplogroups. Compared to non-L2 haplogroups, L2 subjects had lower baseline activated CD4 cells (median 12% vs. 17%; p = 0.03) and tended toward lower activated CD8 cells (41% vs. 47%; p = 0.06). At 48 weeks of ART, L2 subjects had smaller decreases in activated CD4 cells (−4% vs. −11%; p = 0.01), and smaller CD4 cell increases (+95 vs. +178; p = 0.002). In models adjusting for baseline age, CD4 cells, HIV RNA, and naïve-to-memory CD4 cell ratio, haplogroup L2 was associated with lower baseline (p = 0.04) and 48-week change in (p = 0.01) activated CD4 cells.

Conclusions

Among ART-naïve non-Hispanic blacks, mtDNA haplogroup L2 was associated with baseline and 48-week change in T cell activation, and poorer CD4 cell recovery. These data suggest mtDNA variation may influence CD4 T cell dynamics by modulating T cell activation. Further study is needed to replicate these associations and identify mechanisms.  相似文献   

10.

Background

In centenarian populations, application of the positive biology approach (examination of positive phenotypes in aging) has revealed that mitochondrial DNA (mtDNA) mutation accumulation may be linked to human longevity; however, the role of guanine nucleotide-binding protein (G protein) abnormalities modulated by G-protein beta-3 (GNB3) and nitrate (NO2) production associated with endothelial nitric oxide synthase (eNOS), commonly appearing in age-related diseases, remains undetermined.

Objective

The association between the mtDNA 5178A/C, mtDNA 10398A/G, GNB3 C825T, and eNOS polymorphisms and longevity in a Uygur population (Xinjiang region, China) were investigated.

Methods

A total of 275 experimental subjects aged ≥100 or with 4 generations currently living were screened for inclusion in the centenarian (>100 years) and nonagenarian groups (90–100 years), and 112 65–70 year old control subjects were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to examine mtDNA 5178A/C, mtDNA 10398A/G, GNB3 C825T, and eNOS. Associations between polymorphic loci, genotypes, and longevity were analyzed.

Results

165 included subjects (M∶F = 107∶58; mean age = 97±3 years; mean age 100–113 years) were assigned to the centenarian (M∶F = 46/19; n = 65) and nonagenarian groups (M∶F = 61/39; n = 100). Associations between mtDNA C5178A and A10398G polymorphisms with longevity in the centenarian group with mtDNA genotype frequencies 5178A and 10398G were 66.79% and 36.8%.

Conclusions

Applying the overwhelming longevity observed in Uygur populations, these findings demonstrate that mtDNA 5178A/C and 10398A/G, GNB3 C825T, and eNOS polymorphisms are useful as a genetic basis for longevity.  相似文献   

11.

Background

Longevity is a multifactorial trait with a genetic contribution, and mitochondrial DNA (mtDNA) polymorphisms were found to be involved in the phenomenon of longevity.

Methodology/Principal Findings

To explore the effects of mtDNA haplogroups on the prevalence of extreme longevity (EL), a population based case-control study was conducted in Rugao – a prefecture city in Jiangsu, China. Case subjects include 463 individuals aged ≥95 yr (EL group). Control subjects include 926 individuals aged 60–69 years (elderly group) and 463 individuals aged 40–49 years (middle-aged group) randomly recruited from Rugao. We observed significant reduction of M9 haplogroups in longevity subjects (0.2%) when compared with both elderly subjects (2.2%) and middle-aged subjects (1.7%). Linear-by-linear association test revealed a significant decreasing trend of N9 frequency from middle-aged subjects (8.6%), elderly subjects (7.2%) and longevity subjects (4.8%) (p = 0.018). In subsequent analysis stratified by gender, linear-by-linear association test revealed a significant increasing trend of D4 frequency from middle-aged subjects (15.8%), elderly subjects (16.4%) and longevity subjects (21.7%) in females (p = 0.025). Conversely, a significant decreasing trend of B4a frequency was observed from middle-aged subjects (4.2%), elderly subjects (3.8%) and longevity subjects (1.7%) in females (p = 0.045).

Conclusions

Our observations support the association of mitochondrial DNA haplogroups with exceptional longevity in a Chinese population.  相似文献   

12.

Background

Low mitochondrial DNA (mtDNA) copy number is a common feature of renal cell carcinoma (RCC), and may influence tumor development. Results from a recent case-control study suggest that low mtDNA copy number in peripheral blood may be a marker for increased RCC risk. In an attempt to replicate that finding, we measured mtDNA copy number in peripheral blood DNA from a U.S. population-based case-control study of RCC.

Methodology/Principal Findings

Relative mtDNA copy number was measured in triplicate by a quantitative real-time PCR assay using DNA extracted from peripheral whole blood. Cases (n = 603) had significantly lower mtDNA copy number than controls (n = 603; medians 0.85, 0.91 respectively; P = 0.0001). In multiple logistic regression analyses, the lowest quartile of mtDNA copy number was associated with a 60% increase in RCC risk relative to the highest quartile (OR = 1.6, 95% CI = 1.1–2.2; P trend = 0.009). This association remained in analyses restricted to cases treated by surgery alone (OR Q1 = 1.4, 95% CI = 1.0–2.1) and to localized tumors (2.0, 1.3–2.8).

Conclusions/Significance

Our findings from this investigation, to our knowledge the largest of its kind, offer important confirmatory evidence that low mtDNA copy number is associated with increased RCC risk. Additional research is needed to assess whether the association is replicable in prospective studies.  相似文献   

13.

Background

We sought to determine whether clinical response or tolerance to the Selective Serotonin Reuptake Inhibitor (SSRI) citalopram is associated with genetic polymorphisms in potentially relevant pharmacokinetic enzymes.

Methodology

We used a two-stage case-control study design in which we split the sample of 1,953 subjects from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial into a discovery (n = 831) and validation set (n = 1,046). Fifteen polymorphisms from five (CYP2D6, ABCB1, CYP2C19, CYP3A4, and CYP3A5) pharmacokinetic genes were genotyped. We examined the associations between these polymorphisms and citalopram response and tolerance. Significant associations were validated in the second stage for those polymorphism found to be statistically significant in the first stage.

Conclusions

No genetic polymorphism in the pharmacokinetic genes examined was significantly associated with our response or tolerance phenotypes in both stages. For managing pharmacological treatment with citalopram, routine screening of the common pharmacokinetic DNA variants that we examined appears to be of limited clinical utility.  相似文献   

14.

Background

Alzheimer’s disease (AD) is the most common cause of dementia and AD risk clusters within families. Part of the familial aggregation of AD is accounted for by excess maternal vs. paternal inheritance, a pattern consistent with mitochondrial inheritance. The role of specific mitochondrial DNA (mtDNA) variants and haplogroups in AD risk is uncertain.

Methodology/Principal Findings

We determined the complete mitochondrial genome sequence of 1007 participants in the Cache County Study on Memory in Aging, a population-based prospective cohort study of dementia in northern Utah. AD diagnoses were made with a multi-stage protocol that included clinical examination and review by a panel of clinical experts. We used TreeScanning, a statistically robust approach based on haplotype networks, to analyze the mtDNA sequence data. Participants with major mitochondrial haplotypes H6A1A and H6A1B showed a reduced risk of AD (p = 0.017, corrected for multiple comparisons). The protective haplotypes were defined by three variants: m.3915G>A, m.4727A>G, and m.9380G>A. These three variants characterize two different major haplogroups. Together m.4727A>G and m.9380G>A define H6A1, and it has been suggested m.3915G>A defines H6A. Additional variants differentiate H6A1A and H6A1B; however, none of these variants had a significant relationship with AD case-control status.

Conclusions/Significance

Our findings provide evidence of a reduced risk of AD for individuals with mtDNA haplotypes H6A1A and H6A1B. These findings are the results of the largest study to date with complete mtDNA genome sequence data, yet the functional significance of the associated haplotypes remains unknown and replication in others studies is necessary.  相似文献   

15.

Background

Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids.

Methodology/Principal Findings

Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress.

Conclusions/Significance

The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.  相似文献   

16.
Peng MS  Zhang YP 《PloS one》2011,6(6):e21509

Background

Extensive studies in different fields have been performed to reconstruct the prehistory of populations in the Japanese archipelago. Estimates the ancestral population dynamics based on Japanese molecular sequences can extend our understanding about the colonization of Japan and the ethnogenesis of modern Japanese.

Methodology/Principal Findings

We applied Bayesian skyline plot (BSP) with a dataset based on 952 Japanese mitochondrial DNA (mtDNA) genomes to depict the female effective population size (Nef) through time for the total Japanese and each of the major mtDNA haplogroups in Japanese. Our results revealed a rapid Nef growth since ∼5 thousand years ago had left ∼72% Japanese mtDNA lineages with a salient signature. The BSP for the major mtDNA haplogroups indicated some different demographic history.

Conclusions/Significance

The results suggested that the rapid population expansion acted as a major force in shaping current maternal pool of Japanese. It supported a model for population dynamics in Japan in which the prehistoric population growth initiated in the Middle Jomon Period experienced a smooth and swift transition from Jomon to Yayoi, and then continued through the Yayoi Period. The confounding demographic backgrounds of different mtDNA haplogroups could also have some implications for some related studies in future.  相似文献   

17.

Background

Osteoarthritis (OA) is the most common form of arthritis and has become an increasingly important public-health problem. However, the pathogenesis of OA is still unclear. In recent years, its correlation with mtDNA haplogroups attracts much attention. We aimed to perform a meta-analysis to investigate the association between mtDNA haplogroups and OA.

Methods

Published English or Chinese literature from PubMed, Web of Science, SDOS, and CNKI was retrieved up until April 15, 2014. Case-control or cohort studies that detected the frequency of mtDNA haplogroups in OA patients and controls were included. The quality of the included studies was evaluated by the Newcastle-Ottawa Scale (NOS) assessment. A meta-analysis was conducted to calculate pooled odds ratio (OR) with 95% confidence interval (CI) through the random or fixed effect model, which was selected based on the between-study heterogeneity assessed by Q test and I2 test. Subgroup analysis was performed to explore the origin of heterogeneity.

Results

A total of 6 case-control studies (10590 cases and 7161 controls) with an average NOS score of 6.9 were involved. For the analysis between mtDNA haplogroup J and OA, random model was selected due to high heterogeneity. No significant association was found initially (OR = 0.73, 95%CI: 0.52–1.03), however, once any study from UK population was removed the association emerged. Further subgroup analysis demonstrated that there was a significant association in Spain population (OR = 0.57, 95%CI: 0.46–0.71), but not in UK population. Also, subgroup analysis revealed that there was a significant correlation between cluster TJ and OA in Spain population (OR = 0.70, 95%CI: 0.58–0.84), although not in UK population. No significant correlation was found between haplogroup T/cluster HV/cluster KU and OA.

Conclusions

Our current meta-analysis suggests that mtDNA haplogroup J and cluster TJ correlate with the risk of OA in Spanish population, but the associations in other populations require further investigation.  相似文献   

18.

Background

Human beta-defensins (hBDs) are antimicrobial peptides known to play a major role in intestinal innate host defence. Altered mucosal expression of hBDs has been suggested to be implicated in chronic inflammatory bowel disease pathogenesis. However, little is known about expression of these peptides in children.

Methods

Intestinal biopsies were obtained from the duodenum (n = 88), terminal ileum (n = 90) and ascending colon (n = 105) of children with Crohn''s disease (n = 26), ulcerative colitis (n = 11) and healthy controls (n = 16). Quantitative real-time (RT) PCR was performed and absolute mRNA copy numbers analyzed for hBD1-3 as well as inflammatory cytokines IL-8 and TNF-alpha.

Results

Significant induction of hBD2 and hBD3 was observed in the inflamed terminal ileum and ascending colon of IBD children. In the ascending colon induction of hBD2 was found to be significantly lower in children with Crohn''s disease compared to ulcerative colitis. A strong correlation was found between inducible defensins hBD2 and 3 and the inflammatory cytokines IL-8 and TNF-alpha, both in the terminal ileum and ascending colon.

Conclusion

Our study demonstrates distinct changes in hBD expression throughout the intestinal tract of children with IBD, lending further support for their potential role in disease pathogenesis.  相似文献   

19.

Background

Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals.

Methodology

A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100).

Findings

The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or 16% (n = 28) of the human sera, respectively, while type II–III, type I–III or type I–II peptides were recognized by 49% (n = 85), 36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers.

Conclusions

Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution.  相似文献   

20.

Aim

Cellular CD81 is a well characterized hepatitis C virus (HCV) entry factor, while the relevance of soluble exosomal CD81 in HCV pathogenesis is poorly defined. We performed a case-control study to investigate whether soluble CD81 in the exosomal serum fraction is associated with HCV replication and inflammatory activity.

Patients and Methods

Four cohorts were investigated, patients with chronic hepatitis C (n = 37), patients with chronic HCV infection and persistently normal ALT levels (n = 24), patients with long term sustained virologic response (SVR, n = 7), and healthy volunteers (n = 23). Concentration of soluble CD81 was assessed semi-quantitatively after differential centrifugation ranging from 200 g to 100,000 g in the fifth centrifugation fraction by immunoblotting and densitometry.

Results

Soluble CD81 was increased in patients with chronic hepatitis C compared to healthy subjects (p = 0.03) and cured patients (p = 0.017). Patients with chronic HCV infection and persistently normal ALT levels and patients with long term SVR had similar soluble CD81 levels as healthy controls (p>0.2). Overall, soluble CD81 levels were associated with ALT levels (r = 0.334, p = 0.016) and severe liver fibrosis (p = 0.027).

Conclusion

CD81 is increased in the exosomal serum fraction in patients with chronic hepatitis C and appears to be associated with inflammatory activity and severity of fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号