首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined.

Methodology and Principal Findings

The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer''s patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD50 of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD50). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis.

Conclusions and Significance

The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality.  相似文献   

2.

Background

Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy.

Methodology/Principal Findings

The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence.

Conclusions/Significance

We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.  相似文献   

3.

Background

Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia and a significant proportion of individuals from African populations. In African-Americans, it has been shown that caspase-12 inhibits the pro-inflammatory cytokine production.

Methodology/Principal Findings

We assessed whether similar mechanisms are present in African individuals, and whether evolutionary pressures due to plague may have led to the present caspase-12 genotype population frequencies. No difference in cytokine induction through the caspase-1 and/or NOD2/RIP2 pathways was observed in two independent African populations, among individuals with either an intact or absent caspase-12. In addition, stimulations with Yersinia pestis and two other species of Yersinia were preformed to investigate whether caspase-12 modulates the inflammatory reaction induced by Yersinia. We found that caspase-12 did not modulate cytokine production induced by Yersinia spp.

Conclusions

Our experiments demonstrate for the first time the involvement of the NOD2/RIP2 pathway for recognition of Yersinia. However, caspase-12 does not modulate innate host defense against Y. pestis and alternative explanations for the geographical distribution of caspase-12 should be sought.  相似文献   

4.
5.

Background

Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics.

Methodology/Principal Findings

The objective of this work was to develop an alternative to conventional phage lysis tests – a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages ϕA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. ϕA1122-specific qPCR enabled the detection of an initial bacterial concentration of 103 CFU/ml (equivalent to as few as one Y. pestis cell per 1-µl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, ϕA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR.

Conclusions/Significance

Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.  相似文献   

6.

Background

The human innate immune system relies on the coordinated activity of macrophages and polymorphonuclear leukocytes (neutrophils or PMNs) for defense against bacterial pathogens. Yersinia spp. subvert the innate immune response to cause disease in humans. In particular, the Yersinia outer protein YopJ (Y. pestis and Y. pseudotuberculosis) and YopP (Y. enterocolitica) rapidly induce apoptosis in murine macrophages and dendritic cells. However, the effects of Yersinia Yop J/P on neutrophil fate are not clearly defined.

Methodology/Principal Findings

In this study, we utilized wild-type and mutant strains of Yersinia to test the contribution of YopJ and YopP on induction of apoptosis in human monocyte-derived macrophages (HMDM) and neutrophils. Whereas YopJ and YopP similarly induced apoptosis in HMDMs, interaction of human neutrophils with virulence plasmid-containing Yersinia did not result in PMN caspase activation, release of LDH, or loss of membrane integrity greater than PMN controls. In contrast, interaction of human PMNs with the virulence plasmid-deficient Y. pestis strain KIM6 resulted in increased surface exposure of phosphatidylserine (PS) and cell death. PMN reactive oxygen species (ROS) production was inhibited in a virulence plasmid-dependent but YopJ/YopP-independent manner. Following phagocytic interaction with Y. pestis strain KIM6, inhibition of PMN ROS production with diphenyleneiodonium chloride resulted in a reduction of PMN cell death similar to that induced by the virulence plasmid-containing strain Y. pestis KIM5.

Conclusions

Our findings showed that Yersinia YopJ and/or YopP did not induce pronounced apoptosis in human neutrophils. Furthermore, robust PMN ROS production in response to virulence plasmid-deficient Yersinia was associated with increased PMN cell death, suggesting that Yersinia inhibition of PMN ROS production plays a role in evasion of the human innate immune response in part by limiting PMN apoptosis.  相似文献   

7.

Background

Rhombomys opimus (great gerbil) is a reservoir of Yersinia pestis in the natural plague foci of Central Asia. Great gerbils are highly resistant to Y. pestis infection. The coevolution of great gerbils and Y. pestis is believed to play an important role in the plague epidemics in Central Asia plague foci. However, the dynamics of Y. pestis infection and the corresponding antibody response in great gerbils have not been evaluated. In this report, animal experiments were employed to investigate the bacterial load in both the liver and spleen of infected great gerbils. The dynamics of the antibody response to the F1 capsule antigen of Y. pestis was also determined.

Methodology

Captured great gerbils that tested negative for both anti-F1 antibodies and bacterial isolation were infected subcutaneously with different doses (105 to 1011 CFU) of a Y. pestis strain isolated from a live great gerbil during routine plague surveillance in the Junggar Basin, Xinjiang, China. The clinical manifestations, changes in body weight, anal temperature, and gross anatomy of the infected animals were observed. The blood cell count, bacterial load, and anti-F1 antibody titers were determined at different time points after infection using a blood analyzer, plate counts, and an indirect hemagglutination assay, respectively.

Conclusions/Significance

The dynamics of bacterial load and the anti-F1 antibody concentration in great gerbils are highly variable among individuals. The Y. pestis infection in great gerbils could persist as long as 15 days. They act as an appropriate reservoir for plague in the Junggar Basin, which is part of the natural plague foci in Central Asia. The dynamics of the Y. pestis susceptibility of great gerbil will improve the understanding of its variable resistance, which would facilitate the development of more effective countermeasures for controlling plague epidemics in this focus.  相似文献   

8.

Background

Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress.

Methodology/Principal Findings

To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV), and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not.

Conclusion/Significance

Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs.  相似文献   

9.
10.

Background

The cause of past plague pandemics was controversial but several research teams used PCR techniques and dental pulp as the primary material to reveal that they were caused by Yersinia pestis. However, the degradation of DNA limits the ability to detect ancient infections.

Methods

We used for the first time immuno-PCR to detect Yersinia pestis antigens; it can detect protein concentrations 70 times lower than the standard ELISA. After determining the cut-off value, we tested 34 teeth that were obtained from mass graves of plague, and compared previous PCR results with ELISA and immuno-PCR results.

Results

The immuno-PCR technique was the most sensitive (14 out of 34) followed by the PCR technique (10 out of 34) and ELISA (3 out of 34). The combination of these three methods identified 18 out of 34 (53%) teeth as presumably being from people with the plague.

Conclusion

Immuno-PCR is specific (no false-positive samples were found) and more sensitive than the currently used method to detect antigens of ancient infections in dental pulp. The combination of three methods, ELISA, PCR and immuno-PCR, increased the capacity to identify ancient pathogens in dental pulp.  相似文献   

11.

Background

Variable number of tandem repeats (VNTRs) that are widely distributed in the genome of Yersinia pestis proved to be useful markers for the genotyping and source-tracing of this notorious pathogen. In this study, we probed into the features of VNTRs in the Y. pestis genome and developed a simple hierarchical genotyping system based on optimized VNTR loci.

Methodology/Principal Findings

Capillary electrophoresis was used in this study for multi-locus VNTR analysis (MLVA) in 956 Y. pestis strains. The general features and genetic diversities of 88 VNTR loci in Y. pestis were analyzed with BioNumerics, and a “14+12” loci-based hierarchical genotyping system, which is compatible with single nucleotide polymorphism-based phylogenic analysis, was established.

Conclusions/Significance

Appropriate selection of target loci reduces the impact of homoplasies caused by the rapid mutation rates of VNTR loci. The optimized “14+12” loci are highly discriminative in genotyping and source-tracing Y. pestis for molecular epidemiological or microbial forensic investigations with less time and lower cost. An MLVA genotyping datasets of representative strains will improve future research on the source-tracing and microevolution of Y. pestis.  相似文献   

12.

Background

Whole genome sequencing allowed the development of a number of high resolution sequence based typing tools for Yersinia (Y.) pestis. The application of these methods on isolates from most known foci worldwide and in particular from China and the Former Soviet Union has dramatically improved our understanding of the population structure of this species. In the current view, Y. pestis including the non or moderate human pathogen Y. pestis subspecies microtus emerged from Yersinia pseudotuberculosis about 2,600 to 28,600 years ago in central Asia. The majority of central Asia natural foci have been investigated. However these investigations included only few strains from Mongolia.

Methodology/Principal Findings

Clustered Regularly Interspaced Short Prokaryotic Repeats (CRISPR) analysis and Multiple-locus variable number of tandem repeats (VNTR) analysis (MLVA) with 25 loci was performed on 100 Y. pestis strains, isolated from 37 sampling areas in Mongolia. The resulting data were compared with previously published data from more than 500 plague strains, 130 of which had also been previously genotyped by single nucleotide polymorphism (SNP) analysis. The comparison revealed six main clusters including the three microtus biovars Ulegeica, Altaica, and Xilingolensis. The largest cluster comprises 78 isolates, with unique and new genotypes seen so far in Mongolia only. Typing of selected isolates by key SNPs was used to robustly assign the corresponding clusters to previously defined SNP branches.

Conclusions/Significance

We show that Mongolia hosts the most recent microtus clade (Ulegeica). Interestingly no representatives of the ancestral Y. pestis subspecies pestis nodes previously identified in North-western China were identified in this study. This observation suggests that the subsequent evolution steps within Y. pestis pestis did not occur in Mongolia. Rather, Mongolia was most likely re-colonized by more recent clades coming back from China contemporary of the black death pandemic, or more recently in the past 600 years.  相似文献   

13.

Background

Ribosome display technology has provided an alternative platform technology for the development of novel low-cost antibody based on evaluating antibiotics derived residues in food matrixes.

Methodology/Principal Findings

In our current studies, the single chain variable fragments (scFvs) were selected from hybridoma cell lines against sulfadimidine (SM2) by using a ribosome library technology. A DNA library of scFv antibody fragments was constructed for ribosome display, and then mRNA–ribosome–antibody (MRA) complexes were produced by a rabbit reticulocyte lysate system. The synthetic sulfadimidine-ovalbumin (SM2-OVA) was used as an antigen to pan MRA complexes and putative scFv-encoding genes were recovered by RT-PCR in situ following each panning. After four rounds of ribosome display, the expression vector pCANTAB5E containing the selected specific scFv DNA was constructed and transformed into Escherichia coli HB2151. Three positive clones (SAS14, SAS68 and SAS71) were screened from 100 clones and had higher antibody activity and specificity to SM2 by indirect ELISA. The three specific soluble scFvs were identified to be the same molecular weight (approximately 30 kDa) by Western-blotting analysis using anti-E tag antibodies, but they had different amino acids sequence by sequence analysis.

Conclusions/Significance

The selection of anti-SM2 specific scFv by in vitro ribosome display technology will have an important significance for the development of novel immunodetection strategies for residual veterinary drugs.  相似文献   

14.

Background

Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.

Methodology

In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.

Significance

These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.  相似文献   

15.

Background

Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37°C.

Methods/Principal Findings

TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37°C for at least 49 days for a lower concentration of template DNA (10 copies/µl), and up to 79 days for higher concentrations (≥102 copies/µl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5×104 CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here.

Conclusions/Significance

The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37°C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance.  相似文献   

16.

Background

Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA) in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA.

Results

The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16) which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs) were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum.

Conclusion

Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus.  相似文献   

17.
18.

Background

Yersinia pestis, the pathogen of plague, has greatly influenced human history on a global scale. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), an element participating in immunity against phages'' invasion, is composed of short repeated sequences separated by unique spacers and provides the basis of the spoligotyping technology. In the present research, three CRISPR loci were analyzed in 125 strains of Y. pestis from 26 natural plague foci of China, the former Soviet Union and Mongolia were analyzed, for validating CRISPR-based genotyping method and better understanding adaptive microevolution of Y. pestis.

Methodology/Principal Findings

Using PCR amplification, sequencing and online data processing, a high degree of genetic diversity was revealed in all three CRISPR elements. The distribution of spacers and their arrays in Y. pestis strains is strongly region and focus-specific, allowing the construction of a hypothetic evolutionary model of Y. pestis. This model suggests transmission route of microtus strains that encircled Takla Makan Desert and ZhunGer Basin. Starting from Tadjikistan, one branch passed through the Kunlun Mountains, and moved to the Qinghai-Tibet Plateau. Another branch went north via the Pamirs Plateau, the Tianshan Mountains, the Altai Mountains and the Inner Mongolian Plateau. Other Y. pestis lineages might be originated from certain areas along those routes.

Conclusions/significance

CRISPR can provide important information for genotyping and evolutionary research of bacteria, which will help to trace the source of outbreaks. The resulting data will make possible the development of very low cost and high-resolution assays for the systematic typing of any new isolate.  相似文献   

19.

Background

The species Yersinia pestis is commonly divided into three classical biovars, Antiqua, Medievalis, and Orientalis, belonging to subspecies pestis pathogenic for human and the (atypical) non-human pathogenic biovar Microtus (alias Pestoides) including several non-pestis subspecies. Recent progress in molecular typing methods enables large-scale investigations in the population structure of this species. It is now possible to test hypotheses about its evolution which were proposed decades ago. For instance the three classical biovars of different geographical distributions were suggested to originate from Central Asia. Most investigations so far have focused on the typical pestis subspecies representatives found outside of China, whereas the understanding of the emergence of this human pathogen requires the investigation of strains belonging to subspecies pestis from China and to the Microtus biovar.

Methodology/Principal Findings

Multi-locus VNTR analysis (MLVA) with 25 loci was performed on a collection of Y. pestis isolates originating from the majority of the known foci worldwide and including typical rhamnose-negative subspecies pestis as well as rhamnose-positive subspecies pestis and biovar Microtus. More than 500 isolates from China, the Former Soviet Union (FSU), Mongolia and a number of other foci around the world were characterized and resolved into 350 different genotypes. The data revealed very close relationships existing between some isolates from widely separated foci as well as very high diversity which can conversely be observed between nearby foci.

Conclusions/Significance

The results obtained are in full agreement with the view that the Y. pestis subsp. pestis pathogenic for humans emerged in the Central Asia region between China, Kazakhstan, Russia and Mongolia, only three clones of which spread out of Central Asia. The relationships among the strains in China, Central Asia and the rest of the world based on the MLVA25 assay provide an unprecedented view on the expansion and microevolution of Y. pestis.  相似文献   

20.
Li Y  Dai E  Cui Y  Li M  Zhang Y  Wu M  Zhou D  Guo Z  Dai X  Cui B  Qi Z  Wang Z  Wang H  Dong X  Song Z  Zhai J  Song Y  Yang R 《PloS one》2008,3(5):e2166

Background

DFR (different region) analysis has been developed for typing Yesinia pestis in our previous study, and in this study, we extended this method by using 23 DFRs to investigate 909 Chinese Y. pestis strains for validating DFR-based genotyping method and better understanding adaptive microevolution of Y. pestis.

Methodology/Principal Findings

On the basis of PCR and Bionumerics data analysis, 909 Y. pestis strains were genotyped into 32 genomovars according to their DFR profiles. New terms, Major genomovar and Minor genomovar, were coined for illustrating evolutionary relationship between Y. pestis strains from different plague foci and different hosts. In silico DFR profiling of the completed or draft genomes shed lights on the evolutionary scenario of Y. pestis from Y. pseudotuberculosis. Notably, several sequenced Y. pestis strains share the same DFR profiles with Chinese strains, providing data for revealing the global plague foci expansion.

Conclusions/significance

Distribution of Y. pestis genomovars is plague focus-specific. Microevolution of biovar Orientalis was deduced according to DFR profiles. DFR analysis turns to be an efficient and inexpensive method to portrait the genome plasticity of Y. pestis based on horizontal gene transfer (HGT). DFR analysis can also be used as a tool in comparative and evolutionary genomic research for other bacteria with similar genome plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号