共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuromuscular junction (NMJ) formation requires precise interaction between motoneurons and muscle fibers. LRP4 is a receptor of agrin that is thought to act in cis to stimulate MuSK in muscle fibers for postsynaptic differentiation. Here we dissected the roles of LRP4 in muscle fibers and motoneurons in NMJ formation by cell-specific mutation. Studies of muscle-specific mutants suggest that LRP4 is involved in deciding where to form AChR clusters in muscle fibers, postsynaptic differentiation, and axon terminal development. LRP4 in HEK293 cells increased synapsin or SV2 puncta in contacting axons of cocultured neurons, suggesting a synaptogenic function. Analysis of LRP4 muscle and motoneuron double mutants and mechanistic studies suggest that NMJ formation may also be regulated by LRP4 in motoneurons, which could serve as agrin's receptor in trans to induce AChR clusters. These observations uncovered distinct roles of LRP4 in motoneurons and muscles in NMJ development. 相似文献
2.
3.
4.
5.
S. Allen Counter 《Journal of morphology》1978,158(3):361-365
The ultrastructure of neuromuscular junctions in the twitch fibers of the stapedius muscle of Gallus gallus (domesticus) was investigated as part of a series of neurophysiological studies. Among the morphological features observed were elongated end-plates with numerous large and clear synaptic vesicles mixed with larger dense core vesicles and irregular or aperiodic “active sites” in the presynaptic membrane where synaptic vesicles were focused. The most remarkable features of these junctions were large synaptic clefts (50-80 nm) and the absence of junctional folds in the sarcolemmal surface. Unlike the large periodic junctional folds seen in the neuromuscular junctions of frogs and in the fast twitch fibers of the mammalian stapedius, the preparations studied only show small aperiodic invaginations (primitive folds) in the postsynaptic membranes. This morphological feature remains essentially constant from newly hatched to adult chickens. While these smooth junctions are consistent with earlier findings of inconspicuous junctional folds in the twitch fibers of the chicken posterior latissimus dorsi they are unlike those seen in the fast twitch fibers of the mammalian stapedius muscle, or other twitch fibers in general. The morphological findings of the present study may also suggest that the simple, unmodified neuromuscular junctions in the stapedius of Gallus may be a useful preparation for studies of synaptic membrane structures that employ the freeze-fracture technique. 相似文献
6.
7.
8.
The pharyngeal retractor muscle of the snailHelix lucorum is innervated by a pair of nerves containing axons of two types, for which there are two corresponding types of myoneural junctions with the muscle cells. The junctions of type I correspond to the thick axons. The terminals of these axons, which contain numerous spherical transparent vesicles (41±5 nm) and fewer vesicles of the dense-core type (67±3 nm), make contact mainly with noncontracting sarcoplasmic projections of the muscle cells. Junctions of type II correspond to thin axons, containing many granules. The terminals of these axons make contact with contractile parts of the muscle cells and they contain a heterogeneous population of vesicles: small spherical clear vesicles (44±2 nm), granules with fine-grained contents (135±5 nm), and a few spherical dense-core vesicles. The distance between the muscle cells is usually great — over 50 nm, but in the region of the sarcoplasmic processes the surface membranes come together to form a gap which in some areas does not exceed 10 nm.N. K. Kol'tsov Institute of Developmental Biology, Academy of Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 539–542, September–October, 1977. 相似文献
9.
R K Malhotra A Sood S Sharma S C Chaudhry 《Indian journal of experimental biology》1989,27(11):1010-1012
Leaching behaviour of chick gastrocnemius muscle has been studied with respect to the loss of Na+, K+ and Ca2+ ions in a donor-solvent (muscle-water) system under normal as well as denervated conditions. An attempt has been made to explain the alterations in the rate of electrolytic loss in terms of membrane dysfunctions induced as a result of loss of neural control. 相似文献
10.
Imai F Hirai S Akimoto K Koyama H Miyata T Ogawa M Noguchi S Sasaoka T Noda T Ohno S 《Development (Cambridge, England)》2006,133(9):1735-1744
In developing mammalian telencephalon, the loss of adherens junctions and cell cycle exit represent crucial steps in the differentiation of neuroepithelial cells into neurons, but the relationship between these cellular events remains obscure. Atypical protein kinase C (aPKC) is known to contribute to junction formation in epithelial cells and to cell fate determination for Drosophila neuroblasts. To elucidate the functions of aPKClambda, one out of two aPKC members, in mouse neocortical neurogenesis, a Nestin-Cre mediated conditional gene targeting system was employed. In conditional aPKClambda knockout mice, neuroepithelial cells of the neocortical region lost aPKClambda protein at embryonic day 15 and demonstrated a loss of adherens junctions, retraction of apical processes and impaired interkinetic nuclear migration that resulted in disordered neuroepithelial tissue architecture. These results are evidence that aPKClambda is indispensable for the maintenance of adherens junctions and may function in the regulation of adherens junction integrity upon differentiation of neuroepithelial cells into neurons. In spite of the loss of adherens junctions in the neuroepithelium of conditional aPKClambda knockout mice, neurons were produced at a normal rate. Therefore, we concluded that, at least in the later stages of neurogenesis, regulation of cell cycle exit is independent of adherens junctions. 相似文献
11.
12.
13.
A A Herrera L R Banner M J Werle M Regnier N Nagaya-Stevens 《Journal of neurobiology》1991,22(1):15-28
Synaptic size, synaptic remodelling, polyneuronal innervation, and synaptic efficacy of neuromuscular junctions were studied as a function of growth in cutaneous pectoris muscles of postmetamorphic Rana pipiens. Recently metamorphosed frogs grew rapidly, and this growth was accompanied by hypertrophy of muscle fibers, myogenesis, and increases in the size and complexity of neuromuscular junctions. There were pronounced gradients in pre- and postsynaptic size across the width of the muscle, with neuromuscular junctions and muscle fibers near the medial edge being smaller than in more lateral regions. The incidence of polyneuronal innervation, measured physiologically and histologically, was also higher near the medial edge. Growth-associated declines in all measures of polyneuronal innervation indicated that synapse elimination occurs throughout life. Electrophysiology also demonstrated regional differences in synaptic efficacy and showed that doubly innervated junctions have lower synaptic efficacy than singly innervated junctions. Repeated, in vivo observations revealed extensive growth and remodelling of motor nerve terminals and confirmed that synapse elimination is a slow process. It was concluded that some processes normally associated with embryonic development persist long into adulthood in frog muscles. 相似文献
14.
V Verma 《Journal of ultrastructure research》1984,87(2):136-148
The submaxillaris muscle of the frog after zinc iodide-osmium staining reveals the presence of polyneural innervation. Cholinesterase staining shows that the longer terminals have postsynaptic folds whereas the smaller terminals (up to 5 micron) lack them. Thin-section electron microscopy shows that muscle fibers with or without an M line have terminals with and without postsynaptic folds. The terminals with postsynaptic folds have presynaptic membrane outpocketings above folds. These outpocketings are rudimentary or absent in the terminals without postsynaptic folds. In longer junctions, the P face of the presynaptic membrane has double rows of paired particles on active zone ridges perpendicular to the axis of the muscle. In smaller junctions active zone ridges are rudimentary or absent and double rows of particles form various patterns. Postsynaptic active zones in longer junctions consist of clusters of particles leaving gaps in between, whereas in the smaller junctions they lack gaps. The polyneural innervation and different deployment of membrane particles at neuromuscluar junctions could be a factor responsible for different physiological properties of this muscle. 相似文献
15.
Although physiological differences among neuromuscular junctions (NMJs) have long been known, NMJs have usually been considered as one type of synapse, restricting their potential value as model systems to investigate mechanisms controlling synapse assembly and plasticity. Here we discuss recent evidence that skeletal muscles in the mouse can be subdivided into two previously unrecognized subtypes, designated FaSyn and DeSyn muscles. These muscles differ in the pattern of neuromuscular synaptogenesis during embryonic development. Differences between classes are intrinsic to the muscles, and manifest in the absence of innervation or agrin. The distinct rates of synaptogenesis in the periphery may influence processes of circuit maturation through retrograde signals. While NMJs on FaSyn and DeSyn muscles exhibit a comparable anatomical organization in postnatal mice, treatments that challenge synaptic stability result in nerve sprouting, NMJ remodeling, and ectopic synaptogenesis selectively on DeSyn muscles. This anatomical plasticity of NMJs diminishes greatly between 2 and 6 months postnatally. NMJs lacking this plasticity are lost selectively and very early on in mouse models of motoneuron disease, suggesting that disease-associated motoneuron dysfunction may fail to initiate maintenance processes at “non-plastic” NMJs. Transgenic mice overexpressing growth-promoting proteins in motoneurons exhibit greatly enhanced stimulus-induced sprouting restricted to DeSyn muscles, supporting the notion that anatomical plasticity at the NMJ is primarily controlled by processes in the postsynaptic muscle. The discovery that entire muscles in the mouse differ substantially in the anatomical plasticity of their synapses establishes NMJs as a uniquely advantageous experimental system to investigate mechanisms controlling synaptic rearrangements at defined synapses in vivo. 相似文献
16.
Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. 总被引:32,自引:0,他引:32
Dystrophin-related protein (DRP) is an autosomal gene product with high homology to dystrophin. We have used highly specific antibodies to the unique C-terminal peptide sequences of DRP and dystrophin to examine the subcellular localization and biochemical properties of DRP in adult skeletal muscle. DRP is enriched in isolated sarcolemma from control and mdx mouse muscle, but is much less abundant than dystrophin. Immunofluorescence microscopy localized DRP almost exclusively to the neuromuscular junction region in rabbit and mouse skeletal muscle, as well as mdx mouse muscle and denervated mouse muscle. DRP is also present in normal size and abundance and localizes to the neuromuscular junction region in muscle from the dystrophic mouse model dy/dy. Thus, DRP is a junction-specific membrane cytoskeletal protein that may play an important role in the organization of the postsynaptic membrane of the neuromuscular junction. 相似文献
17.
Our previous studies have shown that partial denervation of extensor digitorum longus muscle (EDL) in the rat at 3 days of age causes an increase in the activity of the intact motoneurons. The originally phasic pattern of activity of EDL became tonic after partial denervation. These modifications of motoneuron activity were associated with the change in the phenotype of the muscle from fast to slow contracting and with a conversion of the muscle fibres from a fast to a slow type. The present study investigates whether the size of the cell body of the active EDL motoneurons change in parallel with the altered muscular activity. The study involved partial denervation of rat EDL muscle by section of the L4 spinal nerve at 3 days of age. Then the remaining motoneurons from L5 spinal nerve supplying the EDL muscle were retrogradly labelled with horseradish peroxidase two months later. The results show a reduction in motoneuron size in parallel with an increase in activity of the motoneurons after partial denervation of EDL muscle. 相似文献
18.
Palytoxin, a highly toxic natural product isolated from zoanthids of the genus Palythoa, is accumulated by a wide range of fishes and marine invertebrates used as food in the Indo-Pacific. It is responsible for many incidents of human morbidity and mortality. The toxin is a potent smooth muscle spasmogen. The cause of the contraction of smooth muscle is unclear, but recent work strongly suggests that it is primarily initiated by the release of neurotransmitters from the motor innervation of the smooth muscle. We show here that palytoxin caused the swelling of the muscle cells and some internal organelles of the anococcygeus muscle of the rat, but no substantial structural damage to the tissue. Axons and Schwann cells were also swollen but the most dramatic feature was the depletion of synaptic vesicles from putative release sites in the axons. Some axons were physically damaged following exposure to the toxin, but this was relatively uncommon (<10% of all axons studied). In the majority of axons there was no damage to nerve terminal membranes, but there was damage to mitochondria. The depletion of vesicles involved all types – clear, dense-cored, large and small. Our observations and pharmacological data gathered elsewhere, provide a neuropathological basis for the spasmogenic activity of palytoxin. 相似文献
19.
D. C. Rogers 《Cell and tissue research》1969,99(3):315-335
Summary The smooth muscle cells in the foot of Helix aspersa are arranged in bundles which interweave to form a complex mesh. In the peripheral cytoplasm of the muscle cells there is a system of interconnected obliquely and longitudinally orientated tubules. The full extent of this system has not been determined; its possible function in relation to Ca++ storage and excitation-contraction coupling is discussed. Longitudinal tubules are present among the myofilaments and in association with mitochondria. Distributed throughout the myofilaments are elliptically shaped dense bodies, the fine structure of which resembles an accumulation of thin filaments. Located on the plasma membrane of the muscle cells are dense areas; the fine structure and relationships of these cellular elements resemble desmosomes. They may serve as attachment points for thin, cytoplasmic filaments (not necessarily myofilaments). The muscle cells are innervated by axons which diverge from a coarse, neural plexus (the sole plexus). The axons initially come into close contact with the muscle cells and then pass over their surfaces for up to 35 before being gradually enveloped by flange-like protrusions of the muscle cells. These axons contain either, (i) agranular vesicles (600 Å in diameter), (ii) agranular and very dense granular vesicles (1000 Å in diameter) or (iii) agranular and less dense, granular vesicles (1000 Å in diameter). The possible role of these inclusions as sites of excitatory and inhibitory transmitters is discussed.I wish to thank Professor G. Burnstock for making laboratory facilities available. This work has been supported by the Australian Research Grants Committee. 相似文献