首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The large nucleoporin Nup358/RanBP2 forms eight filaments that project from the nuclear pore into the cytoplasm where they function as docking platforms for nucleocytoplasmic transport receptors. RNAi screens have implicated Nup358 in the HIV-1 life cycle. The 164 C-terminal amino acids of this 3,224 amino acid protein are a cyclophilin homology domain (Nup358Cyp), which has potential to bind the HIV-1 capsid and regulate viral progress to integration. Here we examined the virological role of Nup358 in conditional knockout mouse cells and in RNAi-depleted human CD4+ T cells. Cre-mediated gene knockout was toxic and diminished HIV-1 infectivity. However, cellular health and HIV-1 susceptibility were coordinately preserved if, prior to gene inactivation, a transposon was used to express all of Nup358 or only the N-terminal 1340 amino acids that contain three FG repeats and a Ran-binding domain. HIV-1, but not N74D capsid-mutant HIV-1, was markedly sensitive to TNPO3 depletion, but they infected 1–1340 segment-complemented Nup358 knockout cells equivalently. Human and mouse CypA both rescued HIV-1 in CypA gene −/− Jurkat cells and TRIM-Nup358Cyp fusions derived from each species were equally antiviral; each also inhibited both WT and N74D virus. In the human CD4+ T cell line SupT1, abrupt Nup358 depletion reduced viral replication but stable Nup358-depleted cells replicated HIV-1 normally. Thus, human CD4+ T cells can accommodate to loss of Nup358 and preserve HIV-1 susceptibility. Experiments with cylosporine, viruses with capsids that do not bind cyclophilins, and growth arrest did not uncover viral dependency on the C-terminal domains of Nup358. Our data reinforce the virological importance of TNPO3 and show that Nup358 supports nuclear transport functions important for cellular homeostasis and for HIV-1 nuclear import. However, the results do not suggest direct roles for the Nup358 cyclophilin or SUMO E3 ligase domains in engaging the HIV-1 capsid prior to nuclear translocation.  相似文献   

2.
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.  相似文献   

3.
4.
Yang R  Aiken C 《Journal of virology》2007,81(8):3749-3756
The replication of many isolates of human immunodeficiency virus type 1 (HIV-1) is enhanced by binding of the host cell protein cyclophilin A (CypA) to the viral capsid protein (CA). The immunosuppressive drug cyclosporine A (CsA) and its nonimmunosuppressive analogs bind with high affinity to CypA and inhibit HIV-1 replication. Previous studies have identified two mutations, A92E and G94D, in the CypA-binding loop of CA that confer the ability of HIV-1 to replicate in the presence of CsA. Interestingly, CsA stimulates the replication of HIV-1 mutants containing either the A92E or G94D substitution in some human cell lines. Here, we show that substitution of alanine for threonine at position 54 of CA (T54A) also confers HIV-1 resistance to and dependence on CsA. Like the previously identified CsA-resistant/dependent mutants, infection by the T54A mutant was stimulated by CsA in a target cell-specific manner. RNA interference-mediated reduction of CypA expression enhanced the permissiveness of HeLa cells to infection by the T54A mutant. A suppressor mutation, encoding a substitution of threonine for alanine at position 105 of CA (A105T), was identified through adaptation of the T54A mutant virus for growth in CEM cells. A105T rescued the impaired single-cycle infectivity and replication defects of both T54A and A92E mutants. These results indicate that CA determinants outside the CypA-binding loop can modulate the dependence of HIV-1 infection on CypA.  相似文献   

5.
The peptidyl-prolyl isomerase cyclophilin A (CypA) increases the kinetics by which human immunodeficiency virus type 1 (HIV-1) spreads in tissue culture. This was conclusively demonstrated by gene targeting in human CD4(+) T cells, but the role of CypA in HIV-1 replication remains unknown. Though CypA binds to mature HIV-1 capsid protein (CA), it is also incorporated into nascent HIV-1 virions via interaction with the CA domain of the Gag polyprotein. These findings raised the possibility that CypA might act at multiple steps of the retroviral life cycle. Disruption of the CA-CypA interaction, either by the competitive inhibitor cyclosporine (CsA) or by mutation of CA residue G89 or P90, suggested that producer cell CypA was required for full virion infectivity. However, recent studies indicate that CypA within the target cell regulates HIV-1 infectivity by modulating Ref1- or Lv1-mediated restriction. To examine the relative contribution to HIV-1 replication of producer cell CypA and target cell CypA, we exploited multiple tools that disrupt the HIV-1 CA-CypA interaction. These tools included the drugs CsA, MeIle(4)-CsA, and Sanglifehrin; CA mutants exhibiting decreased affinity for CypA or altered CypA dependence; HeLa cells with CypA knockdown by RNA interference; and Jurkat T cells homozygous for a deletion of the gene encoding CypA. Our results clearly demonstrate that target cell CypA, and not producer cell CypA, is important for HIV-1 CA-mediated function. Inhibition of HIV-1 infectivity resulting from virion production in the presence of CsA occurs independently of the CA-CypA interaction or even of CypA.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) requires the incorporation of cyclophilin A (CypA) for replication. CypA is packaged by binding to the capsid (CA) region of Gag. This interaction is disrupted by cyclosporine (CsA). Preventing CypA incorporation, either by mutations in the binding region of CA or by the presence of CsA, abrogates virus infectivity. Given that CypA possesses an isomerase activity, it has been proposed that CypA acts as an uncoating factor by destabilizing the shell of CA that surrounds the viral genome. However, because the same domain of CypA is responsible for both its isomerase activity and its capacity to be packaged, it has been challenging to determine if isomerase activity is required for HIV-1 replication. To address this issue, we fused CypA to viral protein R (Vpr), creating a Vpr-CypA chimera. Because Vpr is packaged via the p6 region of Gag, this approach bypasses the interaction with CA and allows CypA incorporation even in the presence of CsA. Using this system, we found that Vpr-CypA rescues the infectivity of viruses lacking CypA, either produced in the presence of CsA or mutated in the CypA packaging signal of CA. Furthermore, a Vpr-CypA mutant which has no isomerase activity and no capacity to bind to CA also rescues HIV-1 replication. Thus, this study demonstrates that the isomerase activity of CypA is not required for HIV-1 replication and suggests that the interaction of the catalytic site of CypA with CA serves no other function than to incorporate CypA into viruses.  相似文献   

7.
8.
9.
Qi M  Yang R  Aiken C 《Journal of virology》2008,82(24):12001-12008
Among retroviruses, lentiviruses are unusual in their ability to efficiently infect both dividing and nondividing cells, such as activated T cells and macrophages, respectively. Recent studies implicate the viral capsid protein (CA) as a key determinant of cell-cycle-independent infection by human immunodeficiency virus type 1 (HIV-1). We investigated the effects of the host cell protein cyclophilin A (CypA), which binds to HIV-1 CA, on HIV-1 infection of nondividing cells. The HIV-1 CA mutants A92E, T54A, and R132K were impaired for infection of aphidicolin-arrested HeLa cells, but not HOS cells. The mutants synthesized normal quantities of two-long-terminal-repeat circles in arrested HeLa cells, indicating that the mutant preintegration complexes can enter the nuclei of both dividing and nondividing cells. The impaired infectivity of the CA mutants on both dividing and nondividing HeLa cells was relieved by either pharmacological or genetic disruption of the CypA-CA interaction or by RNA interference-mediated depletion of CypA expression in target cells. A second-site suppressor of the CypA-restricted phenotype also restored the ability of CypA-restricted HIV-1 mutants to infect growth-arrested HeLa cells. These results indicate that CypA-restricted mutants are specifically impaired at a step between nuclear import and integration in nondividing HeLa cells. This study reveals a novel target cell-specific restriction of HIV-1 CA mutants in nondividing cells that is dependent on CypA-CA interactions.  相似文献   

10.
Many viruses deliver their genomes into the host cell nucleus for replication. However, the size restrictions of the nuclear pore complex (NPC), which regulates the passage of proteins, nucleic acids, and solutes through the nuclear envelope, require virus capsid uncoating before viral DNA can access the nucleus. We report a microtubule motor kinesin-1-mediated and NPC-supported mechanism of adenovirus uncoating. The capsid binds to the NPC filament protein Nup214 and kinesin-1 light-chain Klc1/2. The nucleoporin Nup358, which is bound to Nup214/Nup88, interacts with the kinesin-1 heavy-chain Kif5c to indirectly link the capsid to the kinesin motor. Kinesin-1 disrupts capsids docked at Nup214, which compromises the NPC and dislocates nucleoporins and capsid fragments into the cytoplasm. NPC disruption increases nuclear envelope permeability as indicated by the nuclear influx of large cytoplasmic?dextran polymers. Thus, kinesin-1 uncoats viral DNA?and compromises NPC integrity, allowing viral genomes nuclear access to promote infection.  相似文献   

11.
Bosco DA  Kern D 《Biochemistry》2004,43(20):6110-6119
The prolyl isomerase cyclophilin A (CypA) is required for efficient HIV-1 replication and is incorporated into virions through a binding interaction at the Gly-Pro(222) bond located within the capsid domain of the HIV-1 Gag precursor polyprotein (Pr(gag)). It has recently been shown that CypA efficiently catalyzes the cis/trans isomerization of Gly-Pro(222) within the isolated N-terminal domain of capsid (CA(N)). To address the proposal that CypA interacts with Gly-Pro sequences in the C-terminal domain of a mature capsid, the interaction between CypA and the natively folded, full-length capsid protein (CA(FL)) has been investigated here using nuclear magnetic resonance spectroscopy. In addition, a fragment of the Pr(gag) protein encoding the full-matrix protein and the N-terminal domain of capsid (MA-CA(N)) has been used to probe the catalytic interaction between CypA and an immature form of the capsid. The results discussed herein strongly suggest that Gly-Pro(222) located within the N-terminal domain of the capsid is the preferential site for CypA binding and catalysis and that catalysis of Gly-Pro(222) is unaffected by maturational processing at the N-terminus of the capsid.  相似文献   

12.
Cyclophilin A (CypA) is a peptidyl-prolyl isomerase that binds to the capsid protein (CA) of human immunodeficiency virus type 1 (HIV-1) and by doing so facilitates HIV-1 replication. Although CypA is incorporated into HIV-1 virions by virtue of CypA-Gag interactions that occur during virion assembly, in this study we show that the CypA-CA interaction that occurs following the entry of the viral capsid into target cells is the major determinant of CypA's effects on HIV-1 replication. Specifically, by using normal and CypA-deficient Jurkat cells, we demonstrate that the presence of CypA in the target and not the virus-producing cell enhances HIV-1 infectivity. Moreover, disruption of the CypA-CA interaction with cyclosporine A (CsA) inhibits HIV-1 infectivity only if the target cell expresses CypA. The effect of CsA on HIV-1 infection of human cells varies according to which particular cell line is used as a target, and CA mutations that confer CsA resistance and dependence exert their effects only if target cells, and not if virus-producing cells, are treated with CsA. The differential effects of CsA on HIV-1 infection in different human cells appear not to be caused by polymorphisms in the recently described retrovirus restriction factor TRIM5alpha. We speculate that CypA and/or CypA-related proteins affect the fate of incoming HIV-1 capsid either directly or by modulating interactions with unidentified host cell factors.  相似文献   

13.
Nuclear pore complexes (NPCs) traverse the nuclear envelope (NE), providing a channel through which nucleocytoplasmic transport occurs. Nup358/RanBP2, Nup214/CAN, and Nup88 are components of the cytoplasmic face of the NPC. Here we show that Nup88 localizes midway between Nup358 and Nup214 and physically interacts with them. RNA interference of either Nup88 or Nup214 in human cells caused a strong reduction of Nup358 at the NE. Nup88 and Nup214 showed an interdependence at the NPC and were not affected by the absence of Nup358. These data indicate that Nup88 and Nup214 mediate the attachment of Nup358 to the NPC. We show that localization of the export receptor CRM1 at the cytoplasmic face of the NE is Nup358 dependent and represents its empty state. Also, removal of Nup358 causes a distinct reduction in nuclear export signal-dependent nuclear export. We propose that Nup358 provides both a platform for rapid disassembly of CRM1 export complexes and a binding site for empty CRM1 recycling into the nucleus.  相似文献   

14.
Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358.  相似文献   

15.
HIV-1 assembly and disassembly (uncoating) processes are critical for the HIV-1 replication. HIV-1 capsid (CA) and human cyclophilin A (CypA) play essential roles in these processes. We designed and synthesized a series of thiourea compounds as HIV-1 assembly and disassembly dual inhibitors targeting both HIV-1 CA protein and human CypA. The SIV-induced syncytium antiviral evaluation indicated that all of the inhibitors displayed antiviral activities in SIV-infected CEM cells at the concentration of 0.6–15.8 μM for 50% of maximum effective rate. Their abilities to bind CA and CypA were determined by ultraviolet spectroscopic analysis, fluorescence binding affinity and PPIase inhibition assay. Assembly studies in vitro demonstrated that the compounds could potently disrupt CA assembly with a dose-dependent manner. All of these molecules could bind CypA with binding affinities (Kd values) of 51.0–512.8 μM. Fifteen of the CypA binding compounds showed potent PPIase inhibitory activities (IC50 values < 1 μM) while they could not bind either to HIV-1 Protease or to HIV-1 Integrase in the enzyme assays. These results suggested that 15 compounds could block HIV-1 replication by inhibiting the PPIase activity of CypA to interfere with capsid disassembly and disrupting CA assembly.  相似文献   

16.
In vertebrates, the nuclear pore complex (NPC), the gate for transport of macromolecules between the nucleus and the cytoplasm, consists of approximately 30 different nucleoporins (Nups). The Nup and SUMO E3-ligase Nup358/RanBP2 are the major components of the cytoplasmic filaments of the NPC. In this study, we perform a structure-function analysis of Nup358 and describe its role in nuclear import of specific proteins. In a screen for nuclear proteins that accumulate in the cytoplasm upon Nup358 depletion, we identified proteins that were able to interact with Nup358 in a receptor-independent manner. These included the importin α/β-cargo DBC-1 (deleted in breast cancer 1) and DMAP-1 (DNA methyltransferase 1 associated protein 1). Strikingly, a short N-terminal fragment of Nup358 was sufficient to promote import of DBC-1, whereas DMAP-1 required a larger portion of Nup358 for stimulated import. Neither the interaction of RanGAP with Nup358 nor its SUMO-E3 ligase activity was required for nuclear import of all tested cargos. Together, Nup358 functions as a cargo- and receptor-specific assembly platform, increasing the efficiency of nuclear import of proteins through various mechanisms.  相似文献   

17.
TRIM5alpha is an important mediator of antiretroviral innate immunity influencing species-specific retroviral replication. Here we investigate the role of the peptidyl prolyl isomerase enzyme cyclophilin A in TRIM5alpha antiviral activity. Cyclophilin A is recruited into nascent human immunodeficiency virus type 1 (HIV-1) virions as well as incoming HIV-1 capsids, where it isomerizes an exposed proline residue. Here we show that cyclophilin A renders HIV-1 sensitive to restriction by TRIM5alpha in cells from Old World monkeys, African green monkey and rhesus macaque. Inhibition of cyclophilin A activity with cyclosporine A, or reducing cyclophilin A expression with small interfering RNA, rescues TRIM5alpha-restricted HIV-1 infectivity. The effect of cyclosporine A on HIV-1 infectivity is dependent on TRIM5alpha expression, and expression of simian TRIM5alpha in permissive feline cells renders them able to restrict HIV-1 in a cyclosporine A-sensitive way. We use an HIV-1 cyclophilin A binding mutant (CA G89V) to show that cyclophilin A has different roles in restriction by Old World monkey TRIM5alpha and owl monkey TRIM-Cyp. TRIM-Cyp, but not TRIM5alpha, recruits its tripartite motif to HIV-1 capsid via cyclophilin A and, therefore, HIV-1 G89V is insensitive to TRIM-Cyp but sensitive to TRIM5alpha. We propose that cyclophilin A isomerization of a proline residue in the TRIM5alpha sensitivity determinant of the HIV-1 capsid sensitizes it to restriction by Old World monkey TRIM5alpha. In humans, where HIV-1 has adapted to bypass TRIM5alpha activity, the effects of cyclosporine A are independent of TRIM5alpha. We speculate that cyclophilin A alters HIV-1 sensitivity to a TRIM5alpha-independent innate immune pathway in human cells.  相似文献   

18.
19.
20.
Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号