首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:探讨云南地区人群中DRD2(TaqIA、-141C)、DRD4和DAT基因多态性与酒精依赖的相关性.方法:采用聚合酶链式反应-限制性片断长度多态性(PCR-RFLP)分析技术以及聚合酶链式反应-可变数目串联重复序列多态性(PCR-VNTR)分析技术检测酒依赖组(80例)和对照组(70例)在3个候选基因中的基因型和等位基因频率.结果:上述三个基因多态性的基因型和等位基因频率在酒依赖组和对照组中差异均无统计学意义(P>0.05),对DRD2基因中的TaqIA和-141C进行单倍型分析时发现,Del/Al是一种保护单倍型,能抑制酒依赖综合征的发生.结论:在云南地区人群中,携带有Del/Al单倍型基因的人不易形成酒依赖.  相似文献   

2.
The dopamine D4 receptor (DRD4) gene exhibits a large amount of expressed polymorphism in humans. To understand the evolutionary history of the first exon of DRD4-which in humans contains a polymorphic 12bp tandem duplication, a polymorphic 13bp deletion, and other rare variants-we examined the homologous exon in thirteen other primate species. The great apes possess a variable number of tandem repeats in the same region as humans, both within and among species. In this sense, the 12bp tandem repeat of exon 1 is similar to the 48bp VNTR of exon 3 of DRD4, previously shown to be polymorphic in all primate species examined. The Old World monkeys show no variation in length, and a much higher conservation of amino acid sequence than great apes and humans. The New World monkeys show interspecific differences in length in the region of the 12bp polymorphism, but otherwise show the higher conservation seen in Old World monkeys. The different patterns of variation in monkeys compared to apes suggest strong purifying selective pressure on the exon in these monkeys, and somewhat different selection, possibly relaxed selection, in the apes.  相似文献   

3.
Polymorphism in intron I of the human dopamine D4 receptor is described.  相似文献   

4.
5.
The human D5 dopamine receptor (DRD5) maps on chromosome 4.   总被引:3,自引:0,他引:3  
  相似文献   

6.
Molecular genetic analysis of the allelic variants of the DRD4 and 5-HTTL gene promoter regions was performed in African tribes of Hadza and Datoga, characterized by different levels of socially acceptable aggression. It was demonstrated that Hadza and Datoga people differed in the structural organization of one of the 5-HTTL alleles (extra long allele xL). Analysis of the allele length polymorphism of both genes showed that in the Hadza and Datoga samples examined, variation parameters, as well as the genotype and allele frequency distribution pattern were almost the same. At the same time, analysis of the SNP polymorphism at the A/G substitutions of the 5-HTTL locus revealed a substantial decrease of the active allele L A frequency in the population of Hadza compared to the population of Datoga (χ2 = 3.77; d.f. = 1; p = 0.052).  相似文献   

7.
Associations of the seven-repeat (7R) allele of the human dopamine receptor D4 (DRD4) gene with both the personality trait of novelty seeking and attention deficit/hyperactivity disorder have been reported. Recently, on the basis of the unusual DNA sequence organization of the DRD4 7R 48-bp tandem repeat (VNTR), we proposed that the 7R allele originated as a rare mutational event that increased to high frequency by positive selection. We now have resequenced the entire DRD4 locus from 103 individuals homozygous for 2R, 4R, or 7R variants of the VNTR, a method developed to directly estimate haplotype diversity. DNA from individuals of African, European, Asian, North and South American, and Pacific Island ancestry were used. 4R/4R homozygotes exhibit little linkage disequilibrium (LD) over the region examined, with more polymorphisms observed in DNA samples from African individuals. In contrast, the evidence for strong LD surrounding the 7R allele is dramatic, with all 7R/7R individuals (including those from Africa) exhibiting the same alleles at most polymorphic sites. By intra-allelic comparison at 18 high-heterozygosity sites spanning the locus, we estimate that the 7R allele arose prior to the upper Paleolithic era (approximately 40000-50000 years ago). Further, the pattern of recombination at these polymorphic sites is the pattern expected for selection acting at the 7R VNTR itself, rather than at an adjacent site. We propose a model for selection at the DRD4 locus consistent with these observed LD patterns and with the known biochemical and physiological differences between receptor variants.  相似文献   

8.
The D4 dopamine receptor (DRD4) maps to distal 11p close to HRAS.   总被引:11,自引:0,他引:11  
Dopaminergic pathophysiology is important in several psychiatric illnesses. The recently cloned D4 dopamine receptor gene (DRD4) shows considerable homology to the D2 and D3 dopamine receptors (DRD2 and DRD3); pharmacologically, its affinity for the atypical antipsychotic clozapine is much higher than that of these other dopamine receptors. Probe pB28 for this locus recognizes an informative HincII polymorphism. We typed this polymorphism on several large reference families (a total of about 271 individuals) to place DRD4 in the genetic linkage map. Pairwise linkage analysis (using ILINK) provided evidence for close linkage to the distal 11p loci tyrosine hydroxylase (TH) and the Harvey ras oncogene (HRAS). We used our version of LINKMAP adapted to run under distributed parallel processing (Linda-LINKMAP) for an analysis moving DRD4 across a fixed map with HRAS set 3.8 cM distal to TH. This localized DRD4 close to HRAS, with no crossovers observed between those loci and a maximum lod score of 19.9 (2 cM distal to HRAS). The one LOD unit support interval extends from about 1 cM proximal to HRAS to 8 cM distal to HRAS. Crossovers identified in one kindred place DRD4 distal to TH, providing further evidence for its location close to HRAS, making DRD4 one of the most telomeric of 11p markers. (This also places DRD4 in band 11p15.5.)  相似文献   

9.
Dopamine is a catecholamine neurotransmitter necessary for motor functions. Its deficiency has been observed in several neurological disorders, but replacement of endogenous dopamine via oral or parenteral delivery is limited by poor absorption, rapid metabolism and the inability of dopamine to cross the blood-brain barrier. The intranasal administration of dopamine, however, has resulted in improved central nervous system (CNS) bioavailability compared to that obtained following intravenous delivery. Portions of the nasal mucosa are innervated by olfactory neurons expressing dopamine transporter (DAT) which is responsible for the uptake of dopamine within the central nervous system. The objective of these studies was to study the role of DAT in dopamine transport across the bovine olfactory and nasal respiratory mucosa. Western blotting studies demonstrated the expression of DAT and immunohistochemistry revealed its epithelial and submucosal localization within the nasal mucosa. Bidirectional transport studies over a 0.1-1 mM dopamine concentration range were carried out in the mucosal-submucosal and submucosal-mucosal directions to quantify DAT activity, and additional transport studies investigating the ability of GBR 12909, a DAT inhibitor, to decrease dopamine transport were conducted. Dopamine transport in the mucosal-submucosal direction was saturable and was decreased in the presence of GBR 12909. These studies demonstrate the activity of DAT in the nasal mucosa and provide evidence that DAT-mediated dopamine uptake plays a role in the absorption and distribution of dopamine following intranasal administration.  相似文献   

10.
Multiple dopamine receptors in the dopaminergic system may be prime candidates for genetic influence on alcohol abuse and dependence due to their involvement in reward and reinforcing mechanisms. Genetic polymorphisms in dopamine receptor genes are believed to influence the development and/or severity of alcoholism. To examine the genetic effects of the Dopamine Receptor D1 (DRD) gene family (DRD1-DRD5) in the Korean population, 11 polymorphisms in the DRD gene family were genotyped and analyzed in 535 alcohol-dependent subjects and 273 population controls. Although none of the polymorphisms of DRD1-5 genes were found to be associated with the risk of alcoholism, one 5' UTR polymorphism in the DRD1 (DRD1-48A>G) gene was significantly associated with severity of alcohol-related problem, as measured by the Alcohol Use Disorders Identification Test (AUDIT) in a gene dose-dependent manner, i.e., 24.37 (+/-8.19) among patients with -48A/A genotype, 22.37 (+/-9.49) among those with -48A/G genotype, and 17.38 (+/-8.28) among those with -48G/G genotype (P=0.002). The genetic effects of DRD1-48A>G were further analyzed with other phenotypes among alcohol-dependent subjects. Interestingly, the DRD1-48A>A genotype was also found to be associated with novelty seeking (NC), harm avoidance (HA), and persistence (P) (P =0.01, 0.02, and 0.003, respectively). The information derived from this study could be valuable for understanding the genetic factors involved in alcoholic phenotypes and genetic distribution of the DRD gene family, and could facilitate further investigation in other ethnic groups.  相似文献   

11.
In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.  相似文献   

12.
A large number of mammalian species harbor a tandem repeat in exon III of the gene encoding dopamine receptor D4 (DRD4), a receptor associated with cognitive functions. In this study, a DRD4 gene exon III tandem repeat from the order Cetacea was identified and characterized. Included in our study were samples from 10 white-beaked dolphins (Lagenorhynchus albirostris), 10 harbor porpoises (Phocoena phocoena), eight sperm whales (Physeter macrocephalus), and five minke whales (Balaenoptera acutorostrata). Using enzymatic amplification followed by sequencing of amplified fragments, a tandem repeat composed of 18-bp basic units was detected in all of these species. The tandem repeats in white-beaked dolphin and harbor porpoise were both monomorphic and consisted of 11 and 12 basic units, respectively. In contrast, the sperm whale harbored a polymorphic tandem repeat with size variants composed of three, four, and five basic units. Also the tandem repeat in minke whale was polymorphic; size variants composed of 6 or 11 basic units were found in this species. The consensus sequences of the basic units were identical in the closely related white-beaked dolphin and harbor porpoise, and these sequences differed by a maximum of two changes when compared to the remaining species. There was a high degree of similarity between the cetacean basic unit consensus sequences and those from members of the horse family and domestic cow, which also harbor a tandem repeat composed of 18-bp basic units in exon III of their DRD4 gene. Consequently, the 18-bp tandem repeat appears to have originated prior to the differentiation of hoofed mammals into odd-toed and even-toed ungulates. The composition of the tandem repeat in cetaceans differed markedly from that in primates, which is composed of 48-bp repeat basic units.  相似文献   

13.
This article reports an association between the variation of dopamine D4 receptor (DRD4) allele frequencies around the globe and population migration patterns in prehistoric times. After compiling existing data on DRD4 allele frequencies of 2,320 individuals from 39 populations and on the migration pattern of these groups, we found that, compared to sedentary populations, migratory populations showed a higher proportion of long alleles for DRD4. The correlation between macro-migration (long-distance group migration) and the proportion of long alleles of DRD4 was .85 (p < .001), and that between micro-migration (sedentary vs. nomadic settlement) and the proportion of long alleles was .52 (p = .001). We discussed the adaptive value of long alleles of DRD4—a genetic trait that has been linked in some studies to the personality trait of novelty-seeking and to hyperactivity— in migratory societies and the possibility of natural selection for a migration gene.  相似文献   

14.
The mechanisms whereby 1-methyl-4-phenylpyridinium (MPP(+)) mediates cell death and Parkinsonism are still unclear. We have shown that dopamine transporter (DAT) is required for MPP(+)-mediated cytotoxicity in HEK-293 cells stably transfected with human DAT. Furthermore, MPP(+) produced a concentration- and time-dependent reduction in the uptake of [3H]dopamine. We observed a significant decrease in [3H]WIN 35428 binding in the intact cells with MPP(+). The saturation analysis of the [3H]WIN 35428 binding obtained from total membrane fractions revealed a decrease in the transporter density (B(max)) with an increase in the dissociation equilibrium constant (K(d)) after MPP(+) treatment. Furthermore, biotinylation assays confirmed that MPP(+) reduced both plasma membrane and intracellular DAT immunoreactivity. Taken together, these findings suggest that the reduction in cell surface DAT protein expression in response to MPP(+) may be a contributory factor in the down-regulation of DAT function while enhanced lysosomal degradation of DAT may signal events leading to cellular toxicity.  相似文献   

15.
Wang M  Lee FJ  Liu F 《Molecules and cells》2008,25(2):149-157
Dopamine is a major neurotransmitter in the mammalian central nervous system (CNS) that regulates neuroendocrine functions, locomotor activity, cognition and emotion. The dopamine system has been extensively studied because dysfunction of this system is linked to various pathological conditions including Parkinson's disease, schizophrenia, Tourette's syndrome, and drug addiction. Accordingly, intense efforts to delineate the full complement of signaling pathways mediated by individual receptor subtypes have been pursued. Dopamine D1-like receptors are of particular interest because they are the most abundant dopamine receptors in CNS. Recent work suggests that dopamine signaling could be regulated via dopamine receptor interacting proteins (DRIPs). Unraveling these DRIPs involved in the dopamine system may provide a better understanding of the mechanisms underlying CNS disorders related to dopamine system dysfunction and may help identify novel therapeutic targets.  相似文献   

16.
Summary A new biallelic polymorphism for FokI restriction enzyme due to CT transition in the fourth intron of human DRD2 is described. It must be a usefull marker of this candidate gene for several mental disorders.  相似文献   

17.
Existing studies of the effect on infant temperament of the 48 base pair variable number of tandem repeats polymorphism in exon 3 of the dopamine D4 receptor gene, DRD4 VNTR, and the serotonin transporter-linked polymorphic region, 5-HTTLPR, have provided contradictory results, and age seems to be an important factor. The present study investigated the effect of these two polymorphisms on the stability of infant temperament between 4 and 9 months of age. Furthermore, the effect of a recently discovered single nucleotide polymorphism which modulates the 5-HTTLPR (rs25531) was investigated in relation to infant temperament. The study sample consisted of 90 infants, who were assessed by parental report at the two ages under consideration using the Revised Infant Behavior Questionnaire. It was found that infants carrying the 7-repeat allele of the DRD4 VNTR had higher levels of Negative Affect. Furthermore, there was an interaction between DRD4 VNTR and 5-HTTLPR genotype such that infants with the DRD4 VNTR 7-repeat allele and the highest expressing 5-HTTLPR genotype (L(A) L(A) ) had the highest level of Negative Affect. These effects were largely driven by scores on the Falling Reactivity scale. Genetic effects were stable across age. The results emphasize the need for developmental studies of genetic effects on temperament.  相似文献   

18.
Individuals exhibit substantial heterogeneity in financial risk aversion. Recent work on twins demonstrated that some variation is influenced by individual heritable differences. Despite this, there has been no study investigating possible genetic loci associated with financial risk taking in healthy individuals. Here, we examined whether there is an association between financial risk preferences, elicited experimentally in a game with real monetary payoffs, and the presence of the 7-repeat allele (7R+) in the dopamine receptor D4 gene as well as the presence of the A1 allele (A1+) in the dopamine receptor D2 gene in 94 young men. Although we found no association between the A1 allele and risk preferences, we did find that 7R+ men are significantly more risk loving than 7R? men. This polymorphism accounts for roughly 20% of the heritable variation in financial risk taking. We suggest that selection for the 7R allele may be for a behavioral phenotype associated with risk taking. This is consistent with previous evolutionary explanations suggesting that selection for this allele was for behaviors associated with migration and male competition, both of which entail an element of risk.  相似文献   

19.
The human dopamine transporter (DAT1) gene is localized to chromosome 5p15.3 by in situ hybridization and PCR amplification of rodent somatic cell hybrid DNA. Analysis of a 40-bp repeat in the 3' untranslated region of the message revealed variable numbers of the repeat ranging from 3 to 11 copies. These results will aid in the investigation of a role for this gene in genetic disorders of the dopaminergic system in humans.  相似文献   

20.
Dopamine agonists such as bromocriptine and cabergoline have been successfully used in the treatment of pituitary prolactinomas and other neuroendocrine tumors. However, their therapeutic mechanisms are not fully understood. In this study we demonstrated that DRD5 (dopamine receptor D5) agonists were potent inhibitors of pituitary tumor growth. We further found that DRD5 activation increased production of reactive oxygen species (ROS), inhibited the MTOR pathway, induced macroautophagy/autophagy, and led to autophagic cell death (ACD) in vitro and in vivo. In addition, DRD5 protein was highly expressed in the majority of human pituitary adenomas, and treatment of different human pituitary tumor cell cultures with the DRD5 agonist SKF83959 resulted in growth suppression, and the efficacy was correlated with the expression levels of DRD5 in the tumors. Furthermore, we found that DRD5 was expressed in other human cancer cells such as glioblastomas, colon cancer, and gastric cancer. DRD5 activation in these cell lines suppressed their growth, inhibited MTOR activity, and induced autophagy. Finally, in vivo SKF83959 also inhibited human gastric cancer cell growth in nude mice. Our studies revealed novel mechanisms for the tumor suppressive effects of DRD5 agonists, and suggested a potential use of DRD5 agonists as a novel therapeutic approach in the treatment of different human tumors and cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号