首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.  相似文献   

2.
A neuronal integral membrane glycoprotein M6a has been suggested to be involved in a number of biological processes, including neuronal remodeling and differentiation, trafficking of mu-opioid receptors, and Ca(2+) transportation. Moreover, pathological situations such as chronic stress in animals and depression in humans have been associated with alterations in M6a sequence and expression. The mechanism of action of M6a is essentially unknown. In this work, we analyze the relevance of M6a distribution in plasma membrane, namely its lipid microdomain targeting, for its biological function in filopodia formation. We demonstrate that M6a is localized in membrane microdomains compatible with lipid rafts in cultured rat hippocampal neurons. Removal of cholesterol from neuronal membranes with methyl-β-cyclodextrin decreases M6a-induced filopodia formation, an effect that is reversed by the addition of cholesterol. Inhibition of Src kinases and MAPK prevents filopodia formation in M6a-over-expressing neurons. Src-deficient SYF cells over-expressing M6a fail to promote filopodia formation. Taken together, our findings reveal that the association of M6a with lipid rafts is important for its role in filopodia formation and Src and MAPK kinases participate in M6a signal propagation.  相似文献   

3.
4.
Kallistatin, a plasma protein, exerts pleiotropic effects in inhibiting angiogenesis, inflammation and tumor growth. Canonical Wnt signaling is the primary pathway for oncogenesis in the mammary gland. In this study, we demonstrate that kallistatin bound to the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6), thus, blocking Wnt/β-catenin signaling and Wnt-mediated growth and migration in MDA-MB-231 breast cancer cells. Kallistatin inhibited Wnt3a-induced proliferation, migration, and invasion of cultured breast cancer cells. Moreover, kallistatin was bound to LRP6 in breast cancer cells, as identified by immunoprecipitation followed by western blot. Kallistatin suppressed Wnt3a-mediated phosphorylation of LRP6 and glycogen synthase kinase-3β, and the elevation of cytosolic β-catenin levels. Furthermore, kallistatin antagonized Wnt3a-induced expression of c-Myc, cyclin D1, and vascular endothelial growth factor. These findings indicate a novel role of kallistatin in preventing breast tumor growth and mobility by direct interaction with LRP6, leading to blockade of the canonical Wnt signaling pathway.  相似文献   

5.
Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M protein gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein.  相似文献   

6.
The receptor tyrosine kinase Ror2 has recently been shown to act as an alternative receptor or coreceptor for Wnt5a and to mediate Wnt5a-induced migration of cultured cells. However, little is known about the molecular mechanism underlying this migratory process. Here we show by wound-healing assays that Ror2 plays critical roles in Wnt5a-induced cell migration by regulating formation of lamellipodia and reorientation of microtubule-organizing center (MTOC). Wnt5a stimulation induces activation of the c-Jun N-terminal kinase JNK at the wound edge in a Ror2-dependent manner, and inhibiting JNK activity abrogates Wnt5a-induced lamellipodia formation and MTOC reorientation. Additionally, the association of Ror2 with the actin-binding protein filamin A is required for Wnt5a-induced JNK activation and polarized cell migration. We further show that Wnt5a-induced JNK activation and MTOC reorientation can be suppressed by inhibiting PKCzeta. Taken together, our findings indicate that Wnt5a/Ror2 activates JNK, through a process involving filamin A and PKCzeta, to regulate polarized cell migration.  相似文献   

7.
8.
A qualitative and quantitative electron microscopic study was performed on rat adipocytes during stimulation of lipolysis by various agents. Scanning electron microscopy of control cells revealed a spherical cell with a textured glycocalyx surface exhibiting small irregular projections. Globular surface evaginations or protrusions measuring 8-18 μM in diameter were seen on cell hemispheres, and there was an average of one protrusion for every two hemispheres examined. Distribution analysis showed that 60 percent of the hemispheres had no protrusions, and 25, 10, and 5 percent of the hemispheres had one, two or three protrusions, respectively. Thin-section and freeze- fracture electron microscopy of the protrusions showed a small triglyceride droplet surrounded by a thin cytoplasmic rim that was continuous with the main cytoplasmic matrix. The glycocalyx coating and plasma membrane extended from the cell surface onto, and over, the protrusion. Scanning microscopy of cells stimulated by lipolytic agents, including epinephrine, adrenocorticotropic hormone, theophylline, and dibutyryl cyclic AMP, revealed a dose-dependent increase in the number of protrusions per cell hemisphere. Maximal concentrations of lipolytic hormones cuase an average 2.5-fold increase in the number of protrusions per hemisphere without changing the average size of the protrusions. Only 40 percent of the stimulated cell hemispheres exhibited no protrusions; over 15 percent of the cells contained three or more; and a number of the protrusions were multilobulate. Insulin prevented the increase in the number of protrusions and the change in distribution caused by the lipolytic hormones but did not prevent the increase caused by theophylline and dibutryl cyclic AMP. The data suggest that the protrusions are a structural feature of the cell and may be related to the lypolytic pathway. These observations may help explain some of the discrepant biochemical data relating to hormonal stimulation of lipolysis.  相似文献   

9.
We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the alpha6beta4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express alpha6beta4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the alpha6beta4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis ( approximately 1 ng/ml), the alpha6beta4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained alpha6beta4 in association with F-actin. Importantly, we demonstrate that this mobilization of alpha6beta4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-alpha and that it is associated with the phosphorylation of the beta4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin-rich cell protrusions that mediate alpha6beta4-dependent cell movement but also the disruption of alpha6beta4-containing hemidesmosomes by protein kinase C.  相似文献   

10.
Ubiquitin is important for the budding of many retroviruses and other enveloped viruses, but the precise role of ubiquitin in virus budding remains unclear. Here, we characterized the ubiquitination of the matrix (M) protein of a paramyxovirus, parainfluenza virus 5 (PIV5). The PIV5 M protein (but not the PIV5 nucleocapsid protein) was found to be targeted for monoubiquitination in transfected mammalian cells. Major sites of ubiquitin attachment identified by mass spectrometry analysis were lysine residues at amino acid positions 79/80, 130, and 247. The cumulative mutation of lysine residues 79, 80, and 130 to arginines led to an altered pattern of M protein ubiquitination and impaired viruslike particle (VLP) production. However, the cumulative mutation of lysine residues 79, 80, 130, and 247 to arginines restored M protein ubiquitination and VLP production, suggesting that ubiquitin is attached to alternative sites on the M protein when the primary ones have been removed. Additional lysine residues were targeted for mutagenesis based on the UbiPred algorithm. An M protein with seven lysine residues changed to arginines exhibited altered ubiquitination and poor VLP production. A recombinant virus encoding an M protein with seven lysines mutated was generated, and this virus exhibited a 6-fold-reduced maximum titer, with the defect being attributed mainly to the budding of noninfectious particles. The recombinant virus was assembly deficient, as judged by the redistribution of viral M and hemagglutinin-neuraminidase proteins in infected cells. Similar assembly defects were observed for the wild-type (wt) virus after treatment with a proteasome inhibitor. Collectively, these findings suggest that the monoubiquitination of the PIV5 M protein is important for proper virus assembly and for the budding of infectious particles.  相似文献   

11.
12.
The open reading frame 4 (ORF 4) gene product of barley yellow dwarf virus (BYDV) may act as a movement protein (MP) by assisting the transport of viral genomic RNA across the nuclear envelope (NE) of host plant cells. To investigate interactions between BYDV MP and the NE, wild-type and mutant open reading frame (ORF 4)-green fluorescent protein (GFP) fusion cistrons were expressed in insect cells. A fusion protein expressed by the wild-type ORF 4-GFP cistron associated with the NE and caused protrusions from its surface. The fusion protein expressed by the mutant ORF 4-GFP cistron lacked a putative amphiphilic alpha-helix at its N-terminus and although associating with the NE, showed decreased levels of protrusions. A peptide homologue of this putative alpha-helix induced an increase of 7 degrees C in the phase transition temperature of dimyrystoyl phosphatidylserine (DMPS) membranes, accompanied by a decrease in membrane fluidity, but exhibited no significant interaction with either dimyristoyl phosphatidylcholine (DMPC) or dimyristoyl phosphatidylethanolamine (DMPE) membranes. These results strongly support the view that BYDV MP may interact with the NE to help transport viral genomic RNA into the nuclear compartment. This function of BYDV MP appears to involve protrusions on the surface of the NE and may require the presence of an N-terminal amphiphilic alpha-helix, which is speculated to destabilize membranes, thereby assisting the entry of BYDV-GAV into the nuclear compartment.  相似文献   

13.
The ADP-ribosylation factor 6 (ARF6) GTPase has a dual function in cells, regulating membrane traffic and organizing cortical actin. ARF6 activation is required for recycling of the endosomal membrane back to the plasma membrane (PM) and also for ruffling at the PM induced by Rac. Additionally, ARF6 at the PM induces the formation of actin-containing protrusions. To identify sequences in ARF6 that are necessary for these distinct functions, we examined the behavior of a chimeric protein of ARF1 and ARF6. The 1-6 chimera (with the amino half of ARF1 and the carboxyl half of ARF6) localized like ARF6 in HeLa cells and moved between the endosome and PM, but it did not form protrusions, an ARF6 effector function. Two residues in the amino-terminal half of ARF6, Q37 and S38, when substituted into the 1-6 chimera allowed protrusion formation, whereas removal of these residues from ARF6 resulted in an inability to form protrusions. Interestingly, expression of 1-6 in cells selectively inhibited protrusions induced by wild-type ARF6 but had no effect on ARF6-regulated membrane movement or Rac-induced ruffling. Thus, we have uncoupled two functions of ARF6, one involved in membrane trafficking, which is necessary for Rac ruffling, and another involved in protrusion formation.  相似文献   

14.
The bacterial pathogen, Listeria monocytogenes, grows in the cytoplasm of host cells and spreads intercellularly using a form of actin-based motility mediated by the bacterial protein ActA. Tightly adherent monolayers of MDCK cells that constitutively express GFP-actin were infected with L. monocytogenes, and intercellular spread of bacteria was observed by video microscopy. The probability of formation of membrane-bound protrusions containing bacteria decreased with host cell monolayer age and the establishment of extensive cell-cell contacts. After their extension into a recipient cell, intercellular membrane-bound protrusions underwent a period of bacterium-dependent fitful movement, followed by their collapse into a vacuole and rapid vacuolar lysis. Actin filaments in protrusions exhibited decreased turnover rates compared with bacterially associated cytoplasmic actin comet tails. Recovery of motility in the recipient cell required 1-2 bacterial generations. This delay may be explained by acid-dependent cleavage of ActA by the bacterial metalloprotease, Mpl. Importantly, we have observed that low levels of endocytosis of neighboring MDCK cell surface fragments occurs in the absence of bacteria, implying that intercellular spread of bacteria may exploit an endogenous process of paracytophagy.  相似文献   

15.
Gpm6a was identified as a stress-responsive gene in the hippocampal formation. This gene is down-regulated in the hippocampus of both socially and physically stressed animals, and this effect can be reversed by antidepressant treatment. Previously we showed that the stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. In the present work, mutational analysis was used to characterize the action of M6a at the molecular level. We show that four cysteines 162, 174, 192, and 202 within EC2 are functionally crucial sites. The presence of cysteines 162 and 202 is essential for the efficient cell surface expression of the M6a protein. In contrast, cysteines 174 and 192, which form a disulfide bridge as shown by biochemical analysis, are not required for the efficient surface expression of M6a. Their mutation to alanine does not interfere with the localization of M6a to filopodial protrusions in primary hippocampal neurons. The neurons expressing C174A and/or C192A mutants display decreased filopodia number. In non-permeabilized cells, these mutant proteins are not recognized by a function-blocking monoclonal antibody directed to M6a. Moreover, neurons in contact with axons expressing C174A/C192A mutant display significantly lower density of presynaptic clusters over their dendrites. Taken together, this study demonstrates that cysteines in the EC2 domain are critical for the role of M6a in filopodium outgrowth and synaptogenesis.  相似文献   

16.
The receptor tyrosine kinase Ror2 plays important roles in developmental morphogenesis. It has recently been shown that Ror2 mediates Wnt5a-induced noncanonical Wnt signaling by activating the Wnt-JNK pathway and inhibiting the beta-catenin-TCF pathway. However, the function of Ror2 in noncanonical Wnt signaling leading to cell migration is largely unknown. We show, using genetically different or manipulated cultured cells, that Ror2 is critical for Wnt5a-induced, but not Wnt3a-induced, cell migration. Ror2-mediated cell migration requires the extracellular cysteine-rich domain (CRD), which is the binding site for Wnt5a, and the cytoplasmic proline-rich domain (PRD) of Ror2. Furthermore, Ror2 can mediate filopodia formation via actin reorganization, irrespective of Wnt5a, and this Ror2-mediated filopodia formation requires the actin-binding protein filamin A, which associates with the PRD of Ror2. Intriguingly, disruption of filopodia formation by suppressing the expression of either Ror2 or filamin A inhibits Wnt5a-induced cell migration, indicating that Ror2-mediated filopodia formation is essential for Wnt5a-induced cell migration.  相似文献   

17.
Cell–cell fusion is important for biological processes including fertilization, development, immunity, and microbial pathogenesis. Bacteria in the pseudomallei group of the Burkholderia species, including B. thailandensis, spread between host cells by inducing cell–cell fusion. Previous work showed that B. thailandensis-induced cell–cell fusion requires intracellular bacterial motility and a bacterial protein secretion apparatus called the type VI secretion system-5 (T6SS-5), including the T6SS-5 protein VgrG5. However, the cellular-level mechanism of and T6SS-5 proteins important for bacteria-induced cell–cell fusion remained incompletely described. Using live-cell imaging, we found bacteria used actin-based motility to push on the host cell plasma membrane to form plasma membrane protrusions that extended into neighboring cells. Then, membrane fusion occurred within membrane protrusions either proximal to the bacterium at the tip or elsewhere within protrusions. Expression of VgrG5 by bacteria within membrane protrusions was required to promote cell–cell fusion. Furthermore, a second predicted T6SS-5 protein, TagD5, was also required for cell–cell fusion. In the absence of VgrG5 or TagD5, bacteria in plasma membrane protrusions were engulfed into neighboring cells. Our results suggest that the T6SS-5 effectors VgrG5 and TagD5 are secreted within membrane protrusions and act locally to promote membrane fusion.  相似文献   

18.
HERC1 is a very large protein involved in membrane traffic through both its ability to bind clathrin and its guanine nucleotide exchange factor (GEF) activity over ARF and Rab family GTPases. Herein, we show that HERC1 is recruited onto actin-rich surface protrusions in ARF6-transfected HeLa cells upon aluminum fluoride (AlF(4)(-)) treatment. Moreover, the fact that HERC1 overexpression does not stimulate protrusion formation in the absence of AlF(4)(-), in conditions where ARNO does, indicates that HERC1 is not acting as an ARF6-GEF in this system, but that instead its recruitment takes place downstream of ARF6 activation. Finally, we suggest a phosphoinositide-binding mechanism whereby HERC1 may translocate to these protrusions.  相似文献   

19.
In normal rat liver, anaphylatoxin C5a receptors (C5aR) are only expressed by nonparenchymal cells, mainly Kupffer cells and hepatic stellate cells, but not by parenchymal cells, i.e., hepatocytes (HC). Nevertheless, C5a stimulates glucose output by HC. This HC-specific defense reaction is induced indirectly via prostanoids secreted by the C5aR-expressing Kupffer cells and hepatic stellate cells. It is shown here that under inflammatory conditions simulated by in vivo treatment of rats with IL-6 C5aR mRNA and protein were induced in HC in a time-dependent manner. Maximal mRNA and protein expression were observed at 4-8 h and 8-10 h, respectively, after IL-6 injection. The newly expressed receptors were functional, because recombinant rat C5a significantly activated glycogen phosphorylase in HC isolated from IL-6-treated but not in HC from control rats. In perfused livers of IL-6-treated animals in contrast to control animals, recombinant rat C5a-induced glucose output was not impaired by inhibition of prostanoid synthesis and function with the cyclooxygenase inhibitor indomethacin and the thromboxane receptor antagonist daltroban. These results indicate that HC-specific defense reactions might be differently regulated under normal and inflammatory conditions as shown here for the indirect prostanoid-dependent or direct C5a-induced activation of hepatocellular glycogen phyosphorylase and glucose output in control or IL-6-treated rats, respectively.  相似文献   

20.
Veksler A  Gov NS 《Biophysical journal》2007,93(11):3798-3810
Formation of protrusions and protein segregation on the membrane is of a great importance for the functioning of the living cell. This is most evident in recent experiments that show the effects of the mechanical properties of the surrounding substrate on cell morphology. We propose a mechanism for the formation of membrane protrusions and protein phase separation, which may lay behind this effect. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature. Our basic assumption is that these membrane proteins represent small adhesion complexes, and also include proteins that activate actin polymerization. Such a continuum model couples the membrane and protein dynamics, including cell-substrate adhesion and protrusive actin force. Linear stability analysis shows that sufficiently strong adhesion energy and actin polymerization force can bring about phase separation of the membrane protein and the appearance of protrusions. Specifically, this occurs when the spontaneous curvature and aggregation potential alone (passive system) do not cause phase separation. Finite-size patterns may appear in the regime where the spontaneous curvature energy is a strong factor. Different instability characteristics are calculated for the various regimes, and are compared to various types of observed protrusions and phase separations, both in living cells and in artificial model systems. A number of testable predictions are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号