共查询到20条相似文献,搜索用时 15 毫秒
1.
This article considers the parameter estimation of multi-fiber family models for biaxial mechanical behavior of passive arteries in the presence of the measurement errors. First, the uncertainty propagation due to the errors in variables has been carefully characterized using the constitutive model. Then, the parameter estimation of the artery model has been formulated into nonlinear least squares optimization with an appropriately chosen weight from the uncertainty model. The proposed technique is evaluated using multiple sets of synthesized data with fictitious measurement noises. The results of the estimation are compared with those of the conventional nonlinear least squares optimization without a proper weight factor. The proposed method significantly improves the quality of parameter estimation as the amplitude of the errors in variables becomes larger. We also investigate model selection criteria to decide the optimal number of fiber families in the multi-fiber family model with respect to the experimental data balancing between variance and bias errors. 相似文献
2.
Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-dependent behaviors under physiological biaxial loading states have yet to be quantified. In the current study, we performed strain rate, creep, and stress-relaxation experiments using porcine AVL under planar biaxial stretch and loaded to physiological levels (60 N/m equi-biaxial tension), with strain rates ranging from quasi-static to physiologic. The resulting stress-strain responses were found to be independent of strain rate, as was the observed low level of hysteresis ( approximately 17%). Stress relaxation and creep results indicated that while the AVL exhibited significant stress relaxation, it exhibited negligible creep over the 3h test duration. These results are all in accordance with our previous findings for the mitral valve anterior leaflet (MVAL) [Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509-1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315-325], and support our observations that valvular tissues are functionally anisotropic, quasi-elastic biological materials. These results appear to be unique to valvular tissues, and indicate an ability to withstand loading without time-dependent effects under physiologic loading conditions. Based on a recent study that suggested valvular collagen fibrils are not intrinsically viscoelastic [Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78-87], we speculate that the mechanisms underlying this quasi-elastic behavior may be attributed to inter-fibrillar structures unique to valvular tissues. These mechanisms are an important functional aspect of native valvular tissues, and are likely critical to improve our understanding of valvular disease and help guide the development of valvular tissue engineering and surgical repair. 相似文献
3.
The biomechanical response of normal and pathologic human abdominal aortic tissue to uniaxial loading conditions is insufficient for the characterization of its three-dimensional (3D) mechanical behavior. Planar biaxial mechanical evaluation allows for 3D constitutive modeling of nearly incompressible tissues, as well as the investigation of the nature of mechanical anisotropy. In the current study, 26 abdominal aortic aneurysm (AAA) tissue samples and 8 age-matched (> 60 years of age) nonaneurysmal abdominal aortic (AA) tissue samples were obtained and tested using a tension-controlled biaxial testing protocol. Graphical response functions (Sun et al., 2003. J. Biomech. Eng. 125, 372-380) were used as a guide to describe the pseudo-elastic response of AA and AAA. Based on the observed pseudo-elastic response, a four-parameter exponential strain energy function developed by Vito (1990. J. Biomech. Eng. 112, 153-159) was used from which both an individual specimen and group material parameter sets were determined for both AA and AAA. Peak Green strain values in the circumferential (Ethetatheta,max) and longitudinal (ELL,max) directions under an equibiaxial tension of 120 N/m were also compared. The strain energy function fit all of the individual specimens well with an average R2 of 0.95 +/- 0.02 and 0.90 +/- 0.02 (mean +/- SEM) for the AA and AAA groups, respectively. The average Ethetatheta,max at 200 N/m equibiaxial tension was found to be significantly smaller for AAAs as compared to AAs (0.07 +/- 0.01 versus 0.13 +/- 0.03, respectively; p < 0.01). There was also a pronounced increase in the circumferential stiffness for AAA tissue as compared to AA tissue, indicating a larger degree of anisotropy for this tissue as compared to age-matched AA tissue. We also observed that the four-parameter Fung-elastic model was not able to fit the AAA tissue mechanical response using physically realistic material parameter values. It was concluded that aneurysmal degeneration of the abdominal aorta is associated with an increase in mechanical anisotropy, with preferential stiffening in the circumferential direction. 相似文献
4.
Comparative analysis and physiological impact of different tissue biopsy methodologies used for the genotyping of laboratory mice 总被引:1,自引:0,他引:1
Genotyping of genetically modified mice and control of authenticity of the genetic background of congenic or coisogenic strains by polymerase chain reaction (PCR) is a routine procedure that can be performed with different tissue biopsies causing variable grades of trauma. In this study, some invasive and non-invasive sampling methods were compared, with the main focus on the impact on animal physiology. We compared ear punch, tail biopsy, hair plugging, mouth and rectum swabs and the simple restraint of the animals, scoring for the impact on heart rate (HR), core body temperature (BT) and motor activity by telemetry, during biopsy and for the following 6 h. Furthermore, in order to correlate the physiological impact with the practicability and reliability of the genotyping results, we performed a PCR analysis of the biopsy samples obtained by using the same collection procedures analysed by telemetry. All sampling methods and restraint induced significant increase in HR and BT and a slight increase in motor activity for 1 h, independent of the invasiveness of the method used. Genotyping of all biopsies allowed the proper identification of transgenic animals, tail biopsies, ear punches and hair follicles giving clear signals, the last method being fast, but also susceptible to cross contaminations during sampling by large numbers of animals. Restraint and all biopsy methods provoked similar physiological changes, indicating that the handling of the animals is of major importance and that the sampling procedure does not strongly influence the physiological parameters. 相似文献
5.
6.
生物制品原辅料的质量控制是保证产品质量的重要因素,就生物制品原辅料分类及质量控制进行了阐述和归纳,并就国家对生物制品原辅料的质量控制要求进行了探讨。 相似文献
7.
Cerebrovascular disease continues to be responsible for significant morbidity and mortality. There is, therefore, a pressing need to understand better the biomechanics of both intracranial arteries and the extracranial arteries that feed these vessels. We used a validated four-fiber family constitutive relation to model passive biaxial stress-stretch behaviors of basilar and common carotid arteries and we developed a new relation to model their active biaxial responses. These data and constitutive relations allow the first full comparison of circumferential and axial biomechanical behaviors between a muscular (basilar) and an elastic (carotid) artery from the same species. Our active model describes the responses by both types of vessels to four doses of the vasoconstrictor endothelin-1 (10(-10)M, 10(-9)M, 10(-8)M, and 10(-7)M) and predicts levels of smooth muscle cell activation associated with basal tone under specific in vitro testing conditions. These results advance our understanding of the biomechanics of intracranial and extracranial arteries, which is needed to understand better their differential responses to similar perturbations in hemodynamic loading. 相似文献
8.
Mismatch of hierarchical structure and mechanical properties between tissue-engineered implants and native tissue may result in signal cues that negatively impact repair and remodeling. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve necessary macroscale properties in the final implant. However, characterizing microscale mechanical properties is challenging, and current methods do not provide the versatility and sensitivity required to measure these fragile, soft biological materials. Here, we developed a novel, highly sensitive Hall-Effect based force sensor that is capable of measuring mechanical properties of biological materials over wide force ranges (μN to N), allowing its use at all steps in layer-by-layer fabrication of engineered tissues. The force sensor design can be easily customized to measure specific force ranges, while remaining easy to fabricate using inexpensive, commercial materials. Although we used the force sensor to characterize mechanics of single-layer cell sheets and silk fibers, the design can be easily adapted for different applications spanning larger force ranges (>N). This platform is thus a novel, versatile, and practical tool for mechanically characterizing biological and biomimetic materials. 相似文献
9.
Muhammad Aasim Muhammad H. Khan Inam U. Rahman Noor Shad Bibi Waqar Ali Nadir Z. Khan Abid A. Khan 《Biotechnology progress》2019,35(4):e2828
Hydrophobic interaction chromatography, an important and effective purification strategy, is generally used for the purification of variety of biomolecules. A basic understanding of the protein interaction behavior is required to effectively separate these biomolecules. A colloidal type extended Derjaguin, Landau, Verwey, and Overbeek calculations were utilized to study the interactions behavior of model proteins to commercially available hydrophobic chromatographic materials that is, Toyopearl Phenyl 650C and Toyopearl Butyl 650C. Physicochemical properties of selected model proteins were achieved by contact angle and zeta potential measurements. The contact angle of chromatographic materials used was achieved through sessile drop method on disrupted beads and capillary penetration method (CPM) on intact beads. The surface properties were further used to calculate the interactions of the proteins to chromatographic supports. The calculated secondary energy minimum of the proteins with the chromatographic materials (from the contact angle values determined through both methods can be correlated with the retention volumes from the real chromatography. The secondary energy minimum values are higher for each protein to the chromatographic materials calculated from the inputs derived through sessile drop method compared to CPM. For instance, immunoglobulin G has secondary energy minimum value of 0.17 kT compared to 0.11 kT, obtained through sessile drop method and CPM, respectively. Average relative values of the energy minimum calculated for all proteins are as 1.51 kT and 1.29 kT for Toyopearl Butyl 650C and Toyopearl Phenyl 650C, respectively, as a conversion factor for estimation of secondary energy minimum for both methods. 相似文献
10.
Determining arterial mechanical properties is important for understanding the work done by the heart and how it changes with cardiovascular disease. Ex vivo tests are necessary to apply various loads to the artery and obtain data to model and predict the behavior under any load. Most ex vivo tests are performed within 24 h of dissection, so the tissue is still "alive." For large elastic arteries; however, the passive mechanical behavior is attributed mostly to the very stable proteins, elastin, and collagen. If the testing equipment fails, is in use, or is located at another facility, it would be useful to store the vessels and postpone the tests until the equipment is available. The goal of this study is to determine the effects of storage time on the mechanical behavior of the common carotid artery from adult mice. Each artery was tested after storage for 1-28 days in physiologic saline at 4°C. There were no significant effects of storage time on the arterial diameter or force at each pressure, but there were significant effects on the stretch ratio and stress at each pressure. The significant effects on the stretch ratio and stress were due to decreases in the unloaded dimensions with storage time, when measured from cut arterial rings. When the unloaded dimensions were measured instead from histology sections, there were no significant changes with storage time. We conclude that histology sections yield a more consistent measurement of the unloaded dimensions and that there are no significant changes in the mechanical behavior of mouse carotid artery with storage up to 28 days. 相似文献
11.
Kimie Murayama Noriko Shindo 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1977,143(2):137-152
Fifty-five ninhydrin-positive compounds in physiological fluids were determined with a Hitachi Model KLA-5 amino acid analyzer by a two-column chromatographic procedure. Both columns were packed with Hitachi Custom 2618 ion-exchange resin. The total analysis time was 9.5 h.In this procedure, particularly glucosamine, mannosamine and galactosamine were separated completely from normal “protein” amino acids, and NG-monomethylarginine, NG,NG-dimethylarginine and NG,N′G-dimethylarginine, which were present in the myelin basic protein of several species and excreted in human urine, were separated from other basic amino acids. The method is useful for various applications with biological materials. 相似文献
12.
One goal of tissue engineering is to replace lost or compromised tissue function, and an approach to this is to control the interplay between materials (scaffolds), cells and growth factors to create environments that promote the regeneration of functional tissues and organs. An increased understanding of the chemical signals that direct cell differentiation, migration and proliferation, advances in scaffold design and peptide engineering that allow this signaling to be recapitulated and the development of new materials, such as DNA-based and stimuli-sensitive polymers, have recently given engineers enhanced control over the chemical properties of a material and cell fate. Additionally, the immune system, which is often overlooked, has been shown to play a beneficial role in tissue repair, and future endeavors in material design will potentially expand to include immunomodulation. 相似文献
13.
A Muller E Rechencq C Kugel J P Lellouche J P Beaucourt G Niel J P Girard J C Rossi C Bonne 《Prostaglandins》1989,38(6):635-644
(5,6)-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acids [5,6)-DiHETEs) were synthesized and separated into four pure diastereoisomers. They were tested for comparative binding affinities to leukotriene receptors (LTC4, LTD4, LTB4) in guinea pig lung membranes. Only (5S,6R)-DiHETE was recognized by the LTD4 receptor, the other receptors interacted with neither of the four isomers. (5S,6R)-DiHETE also contracted ileum in vitro and this effect was inhibited by the LTD4 receptor antagonists ICI 198,615 and SKF104,353. These data suggest that the bioproduct (5S,6R)-DiHETE generated by enzymatic conversion of LTA4 could have some LTD4-like activity when produced in large concentrations. 相似文献
14.
15.
16.
17.
18.
19.
This paper demonstrates the feasibility of material identification and wall stress computation for human common carotid arteries based on non-invasive in vivo clinical data: dynamical intraluminal pressure measured by applanation tonometry, and medial diameter and intimal-medial thickness measured by high-resolution ultrasound echotracking. The mechanical behavior was quantified assuming an axially pre-stretched, thick-walled, cylindrical artery subjected to dynamical blood pressure and perivascular constraints. The wall was further assumed to be three-dimensional and to consist of a nonlinear, hyperelastic, anisotropic, incompressible material with smooth muscle activity and residual stresses. Mechanical contributions by individual constituents-an elastin-dominated matrix, collagen fibers, and vascular smooth muscle-were accounted for using a previously proposed microstructurally motivated constitutive relation. The in vivo boundary value problem was solved semi-analytically to compute the inner pressure during a mean cardiac cycle. Using a nonlinear least-squares method, optimal model parameters were determined by minimizing differences between computed and measured inner pressures over a mean cardiac cycle. The fit-to-data from two healthy patients was very good and the predicted radial, circumferential, and axial stretch and stress fields were sensible. Hence, the proposed approach was able to identify complex geometric and material parameters directly from non-invasive in vivo human data. 相似文献
20.
Various methods for the analysis of cannabinoids in biological materials, including plant and human body materials, are reviewed. Chromatographic methods, such as TLC, GC and HPLC, and non-chromatographic methods, mainly immunoassays, are discussed and compared. Chromatography is most commonly used in the analysis of plant material, with GC apparently offering the most advantages. Immunoassays, such as radioimmunoassay and fluorescence polarisation immunoassay, and enzyme immunoassay methods, such as enzyme multiplied immunoassay technique and enzyme-linked immunosorbent assay, can be used for human body materials; however, GC-MS is still necessary for confirmation and accurate quantification. Preferred methods are suggested for various specific purposes. 相似文献