首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transcriptional regulation of secondary growth in Arabidopsis thaliana   总被引:6,自引:0,他引:6  
  相似文献   

2.
3.
Plants are sessile organisms that have evolved a variety of mechanisms to maintain their cellular homeostasis under stressful environmental conditions. Survival of plants under abiotic stress conditions requires specialized group of heat shock protein machinery, belonging to Hsp70:J-protein family. These heat shock proteins are most ubiquitous types of chaperone machineries involved in diverse cellular processes including protein folding, translocation across cell membranes, and protein degradation. They play a crucial role in maintaining the protein homeostasis by reestablishing functional native conformations under environmental stress conditions, thus providing protection to the cell. J-proteins are co-chaperones of Hsp70 machine, which play a critical role by stimulating Hsp70s ATPase activity, thereby stabilizing its interaction with client proteins. Using genome-wide analysis of Arabidopsis thaliana, here we have outlined identification and systematic classification of J-protein co-chaperones which are key regulators of Hsp70s function. In comparison with Saccharomyces cerevisiae model system, a comprehensive domain structural organization, cellular localization, and functional diversity of A. thaliana J-proteins have also been summarized.  相似文献   

4.
5.
6.
7.
8.
Isoprenoid lipids were found to be covalently linked to proteins of Arabidopsis thaliana. Their identity (polyprenols: Prenol-9-11 with Pren-10 dominating and dolichols: Dol-15-17 with Dol-16 dominating) was confirmed by means of HPLC/ESI-MS with application of the multiple reaction monitoring technique as well as metabolic labeling of Arabidopsis plants with [3H]mevalonate and other precursors. The occurrence of typical farnesol-, geranylgeraniol-, and phytol-modified proteins was also noted. Radioisotopic labeling allowed detection of several proteins that were covalently bound to mevalonate-derived isoprenoid alcohols. A significant portion of polyisoprenylated proteins was recovered in the cytosolic/light vesicular fraction of Arabidopsis cells upon subfractionation. Taken together our data prove that a subset of plant proteins is polyisoprenylated.  相似文献   

9.
Distinct tissues and organs of plants exhibit dissimilar responses to light exposure – cotyledon growth is promoted by light, whereas hypocotyl growth is inhibited by light. Light can have different impacts on root development, including impacting root elongation, morphology, lateral root proliferation and root tropisms. In many cases, light inhibits root elongation. There has been much attention given to whether roots themselves are the sites of photoperception for light that impacts light-dependent growth and development of roots. A number of approaches including photoreceptor localization in planta, localized irradiation and exposure of dissected roots to light have been used to explore the site(s) of light perception for the photoregulation of root development. Such approaches have led to the observation that photoreceptors are localized to roots in many plant species, and that roots are capable of light absorption that can alter morphology and/or gene expression. Our recent results show that localized depletion of phytochrome photoreceptors in Arabidopsis thaliana disrupts root development and root responsiveness to the plant hormone jasmonic acid. Thus, root-localized light perception appears central to organ-specific, photoregulation of growth and development in roots.  相似文献   

10.
11.
Journal of Plant Biochemistry and Biotechnology - Triacylglycerols (TAGs) are derived from ester linkage of fatty acids (FAs) and glycerol and stored by plants in their seeds as carbon and energy...  相似文献   

12.
13.
Auxin and gibberellins (GAs) overlap in the regulation of multiple aspects of plant development, such as root growth and organ expansion. This coincidence raises questions about whether these two hormones interact to regulate common targets and what type of interaction occurs in each case. Auxins induce GA biosynthesis in a range of plant species. We have undertaken a detailed analysis of the auxin regulation of expression of Arabidopsis (Arabidopsis thaliana) genes encoding GA 20-oxidases and GA 3-oxidases involved in GA biosynthesis, and GA 2-oxidases involved in GA inactivation. Our results show that auxin differentially up-regulates the expression of various genes involved in GA metabolism, in particular several AtGA20ox and AtGA2ox genes. Up-regulation occurred very quickly after auxin application; the response was mimicked by incubations with the protein synthesis inhibitor cycloheximide and was blocked by treatments with the proteasome inhibitor MG132. The effects of auxin treatment reflect endogenous regulation because equivalent changes in gene expression were observed in the auxin overproducer mutant yucca. The results suggest direct regulation of the expression of GA metabolism genes by Aux/IAA and ARF proteins. The physiological relevance of this regulation is supported by the observation that the phenotype of certain gain-of-function Aux/IAA alleles could be alleviated by GA application, which suggests that changes in GA metabolism mediate part of auxin action during development.  相似文献   

14.
15.
16.
Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.  相似文献   

17.
18.
Serine (Ser) biosynthesis in C(3) plants can occur via several pathways. One major route involves the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC, EC 2.1.1.10) and serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) with glycine (Gly) as one-carbon (1-C) source. An alternative THF-dependent pathway involves the C1-THF synthase/SHMT activities with formate as 1-C source. Here, we have investigated aspects of the regulation of these two folate-mediated pathways in Arabidopsis thaliana (L.) Heynh. Columbia using two approaches. Firstly, transgenic plants overexpressing formate dehydrogenase (FDH, EC 1.2.1.2) were used to continue our previous studies on the function of FDH in formate metabolism. The formate pool size was approximately 73 nmol (g FW)(-1) in wild type (WT) Arabidopsis plants; three independent transgenic lines had similar-sized pools of formate. Transgenic plants produced more (13)CO(2) from supplied [(13)C]formate than did WT plants but were not significantly different from WT plants in their synthesis of Ser. We concluded that FDH has no direct role in the regulation of the above two pathways of Ser synthesis; the breakdown of formate to CO(2) by the FDH reaction is the primary and preferred fate of the organic acid in Arabidopsis. The ratio between the GDC/SHMT and C1-THF synthase/SHMT pathways of Ser synthesis from [alpha-(13)C]Gly and [(13)C]formate, respectively, in Arabidopsis shoots was 21 : 1; in roots, 9 : 1. In shoots, therefore, the pathway from formate plays only a small role in Ser synthesis; in the case of roots, results indicated that the 9 : 1 ratio was as a result of greater fluxes of (13)C through both pathways together with a relatively higher contribution from the C1-THF synthase/SHMT route than in shoots. We also examined the synthesis of Ser in a GDC-deficient mutant of Arabidopsis (glyD) where the GDC/SHMT pathway was impaired. Compared with WT, glyD plants accumulated 5-fold more Gly than WT after supplying [alpha-(13)C]Gly for 24 h; the accumulation of Ser from [alpha-(13)C]Gly was reduced by 25% in the same time period. On the other hand, the accumulation of Ser through the C1-THF synthase/SHMT pathway in glyD plants was 2.5-fold greater than that in WT plants. Our experiments confirmed that the GDC/SHMT and C1-THF synthase/SHMT pathways normally operate independently in Arabidopsis plants but that when the primary GDC/SHMT pathway is impaired the alternative C1-THF synthase/SHMT pathway can partially compensate for deficiencies in the synthesis of Ser.  相似文献   

19.
Root-knot nematodes are obligate parasites that invade roots and induce the formation of specialized feeding structures. Although physiological and molecular changes inside the root leading to feeding site formation have been studied, very little is known about the molecular events preceding root penetration by nematodes. In order to investigate the influence of root exudates on nematode gene expression before plant invasion and to identify new genes potentially involved in parasitism, sterile root exudates from the model plant Arabidopsis thaliana were produced and used to treat Meloidogyne incognita pre-parasitic second-stage juveniles. After confirming the activity of A. thaliana root exudates (ARE) on M. incognita stylet thrusting, six new candidate genes identified by cDNA-AFLP were confirmed by qRT-PCR as being differentially expressed after incubation for one hour with ARE. Using an in vitro inoculation method that focuses on the events preceding the root penetration, we show that five of these genes are differentially expressed within hours of nematode exposure to A. thaliana roots. We also show that these genes are up-regulated post nematode penetration during migration and feeding site initiation. This study demonstrates that preceding root invasion plant-parasitic nematodes are able to perceive root signals and to respond by changing their behaviour and gene expression.  相似文献   

20.
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号