首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INCLUSive is a suite of algorithms and tools for the analysis of gene expression data and the discovery of cis-regulatory sequence elements. The tools allow normalization, filtering and clustering of microarray data, functional scoring of gene clusters, sequence retrieval, and detection of known and unknown regulatory elements using probabilistic sequence models and Gibbs sampling. All tools are available via different web pages and as web services. The web pages are connected and integrated to reflect a methodology and facilitate complex analysis using different tools. The web services can be invoked using standard SOAP messaging. Example clients are available for download to invoke the services from a remote computer or to be integrated with other applications. All services are catalogued and described in a web service registry. The INCLUSive web portal is available for academic purposes at http://www.esat.kuleuven.ac.be/inclusive.  相似文献   

2.
Because ecosystems fit so nicely the framework of a "dissipative system", a better integration of thermodynamic and ecological perspectives could benefit the quantitative analysis of ecosystems. One obstacle is that traditional food web models are solely based upon the principles of mass and energy conservation, while the theory of non-equilibrium thermodynamics principally focuses on the concept of entropy. To properly cast classical food web models within a thermodynamic framework, one requires a proper quantification of the entropy production that accompanies resource processing of the food web. Here we present such a procedure, which emphasizes a rigorous definition of thermodynamic concepts (e.g. thermodynamic gradient, disequilibrium distance, entropy production, physical environment) and their correct translation into ecological terms. Our analysis provides a generic way to assess the thermodynamic operation of a food web: all information on resource processing is condensed into a single resource processing constant. By varying this constant, one can investigate the range of possible food web behavior within a given fixed physical environment. To illustrate the concepts and methods, we apply our analysis to a very simple example ecosystem: the detrital-based food web of marine sediments. We examine whether entropy production maximization has any ecological relevance in terms of food web functioning.  相似文献   

3.
Demographic loop analysis is one of the basic methods applied in life cycle analysis in population ecology. Here, we developed an R package called “loop” to implement the algorithmic approach of loop analysis developed by a previous work. Additionally, the package can provide flexible network plotting and food web analysis as well. In this paper we illustrated the loop decomposition analysis using the life-cycle graph of a tropical tree species Vouacapoua americana; and performed food web statistics for the two real food webs for illustrating food web plotting and detecting key species in securing food web persistence. The package, including source code and binary versions, is available at the following URL: http://cran.r-project.org/web/packages/loop/.  相似文献   

4.
5.
Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.  相似文献   

6.
7.
Programmatic access to data and tools through the web using so-called web services has an important role to play in bioinformatics. In this article, we discuss the most popular approaches based on SOAP/WS-I and REST and describe our, a cross section of the community, experiences with providing and using web services in the context of biological sequence analysis. We briefly review main technological approaches as well as best practice hints that are useful for both users and developers. Finally, syntactic and semantic data integration issues with multiple web services are discussed.  相似文献   

8.
9.
10.
With the development of high-resolution and high-throughput mass spectrometry(MS)technology, a large quantum of proteomic data is continually being generated. Collecting and sharing these data are a challenge that requires immense and sustained human effort. In this report, we provide a classification of important web resources for MS-based proteomics and present rating of these web resources, based on whether raw data are stored, whether data submission is supported,and whether data analysis pipelines are provided. These web resources are important for biologists involved in proteomics research.  相似文献   

11.
文章利用碳、氮稳定同位素技术对江湖阻隔典型湖泊-保安湖的食物网结构进行了研究。结果表明保安湖中鱼类消费者的主要营养级范围为2.1—3.3, 在调查到的16种鱼类中, 顶级肉食性鱼类种类很少, 杂食性鱼类的种类最多。保安湖食物网主要由两条营养传递途径构成, 即由POM、浮游植物为主要食物源的浮游牧食链与沉积物为主要食物源的底栖食物链。POM、浮游植物、浮游动物和底栖动物是保安湖水域食物网中鱼类的主要食物来源, 其次是沉积物中的碎屑和水生植物等。此外, 从基于理论食性数据的食物网与BIMM模型预测的食物网结构可以看出, 从POM、浮游植物、浮游动物到杂食性鱼类的浮游牧食链在整个食物网中具有主导性, 而从水生植物、沉积物和底栖动物到杂食性鱼类的底栖食物链相对重要性较低。  相似文献   

12.
13.
Patil KR  Roune L  McHardy AC 《PloS one》2012,7(6):e38581
Metagenome sequencing is becoming common and there is an increasing need for easily accessible tools for data analysis. An essential step is the taxonomic classification of sequence fragments. We describe a web server for the taxonomic assignment of metagenome sequences with PhyloPythiaS. PhyloPythiaS is a fast and accurate sequence composition-based classifier that utilizes the hierarchical relationships between clades. Taxonomic assignments with the web server can be made with a generic model, or with sample-specific models that users can specify and create. Several interactive visualization modes and multiple download formats allow quick and convenient analysis and downstream processing of taxonomic assignments. Here, we demonstrate usage of our web server by taxonomic assignment of metagenome samples from an acidophilic biofilm community of an acid mine and of a microbial community from cow rumen.  相似文献   

14.
Pierre Olivier  Benjamin Planque 《Oikos》2017,126(9):1339-1346
A food web topology describes the diversity of species and their trophic interactions, i.e. who eats whom, and structural analysis of food web topologies can provide insight into ecosystem structure and function. It appears simple, at first sight, to list all species and their trophic interactions. However, the very large number of species at low trophic levels and the impossibility to monitor all trophic interactions in the ocean makes it impossible to construct complete food web topologies. In practice, food web topologies are simplified by aggregating species into groups termed trophospecies. It is not clear though, how much simplified versions of food webs retain the structural properties of more detailed networks. Using the most comprehensive Barents Sea food web to date, we investigate the performance of methods to construct simplified food webs using three approaches: taxonomic, structural and regular clustering. We then evaluate how topological properties vary with the level of network simplification. Results show that alteration of food web structural properties due to aggregation are highly sensitive to the methodology used for grouping species and trophic links. In the specific case of the Barents Sea, we show that it is possible to preserve key structural properties of the original complex food web in simplified versions when using taxonomic or structural clustering combined with intermediate 25% linkage for trophic aggregation.  相似文献   

15.
We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations. Received 22 February 2000; accepted 6 October 2000.  相似文献   

16.
土壤微食物网结构与生态功能   总被引:5,自引:0,他引:5  
土壤微食物网是碎屑食物网中与土壤生态过程密切相关的一部分,通过取食资源基质直接或间接地参与养分循环过程,影响陆地生态系统功能.本文从土壤微食物网的组成、结构和生态功能等方面综述了近年来土壤微食物网的研究进展.通过对土壤微食物网的能量通道及营养级联效应的介绍,阐述了土壤微食物网在碳(C)、氮(N)转化、凋落物分解和植物生长等方面的重要作用.针对目前的研究现状,提出未来土壤生态学研究应与高通量测序及稳定同位素技术相结合;通过构建模型进一步加强对土壤食物网结构和功能的研究,从而深入揭示地下生态过程及其对地上植物生长的反馈作用机理.  相似文献   

17.
18.
Even with the ubiquity of Sanger sequencing, automated assembly software are predominantly stand-alone software packages for desktop/laptop use with very few online equivalents, thus geospatially constraining sequence analysis and assembly. With increased data output worldwide, there is also a need for automated quality checks and trimming prior to large assemblies, along with automated detection of mutations. Through web servers with expanded automation and functionalities, even smartphones/phablets can be used to perform complex analysis previously limited to desktops, especially if they can upload files from cloud storage. To facilitate such online accessible sequence assembly and analysis, we created Yet Another Quick Assembly, Analysis and Trimming Tool web server for the automated assembly of multiple .ab1 and .FASTQ sequencing reads de novo with automated trimming and scanning of the assembled sequences for single nucleotide polymorphisms and insertions or deletions without installation of software, allowing it to be accessed from anywhere with Internet access and with minimal dependency on other software and web tools.  相似文献   

19.
SUMMARY: Sequence analysis using Web Resources (SeWeR) is an integrated, Dynamic HTML (DHTML) interface to commonly used bioinformatics services available on the World Wide Web. It is highly customizable, extendable, platform neutral, completely server-independent and can be hosted as a web page as well as being used as stand-alone software running within a web browser.  相似文献   

20.
线虫区系分析指示土壤食物网结构和功能研究进展   总被引:10,自引:0,他引:10  
陈云峰  韩雪梅  李钰飞  胡诚 《生态学报》2014,34(5):1072-1084
土壤食物网结构复杂,功能众多,直接测定土壤食物网各功能群生物量并结合数学模型来推断土壤食物网结构和功能,工作量大且分析过程繁琐。线虫生态学的发展为土壤食物网的研究开辟了一条新的思路,即利用线虫区系分析来定性推断食物网的结构和功能。线虫作为土壤中数量最丰富的后生动物,占据着土壤食物网的中心位置,其物种多样性、食性多样性、生活史策略多样性、功能团多样性奠定了其作为土壤食物网结构和功能指示生物的生态学基础。线虫区系分析根据发展历史可以分为个体分类、生活史策略分类、功能团分类和代谢足迹分类四个时期,其中后两个时期主要用于推断土壤食物网结构和功能。基于功能团的线虫区系分析将线虫的食性和生活史策略结合起来,发展出一系列指数来判断土壤食物网的连通性、食物网链长度、外界养分投入情况、分解途径及对外界干扰的响应等。基于代谢足迹的线虫区系分析在功能团分析基础上,加入线虫能流分析,从而定性反映了土壤食物网功能的大小。两者在指示土壤食物网自下而上调节及对植物线虫控制等方面起着重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号