首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed.  相似文献   

2.
During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini.  相似文献   

3.
The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level (Livneh, Z. (1986) J. Biol. Chem. 261, 9526-9533), inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected. However, reactivation of lesion-terminated primers was achieved by pretreatment with a 3'----5' exonuclease which excised 200 nucleotides or more, generating new 3'-OH termini located away from the UV lesions. When these exonuclease-treated products were subjected to a second round of replication, an increased level of DNA synthesis was observed including additional bypass of photodimers. These results suggest the possibility that 3'----5' exonuclease processing might be required at least transiently during one of the stages of trans-lesion DNA replication, which is believed to be the mechanism of SOS-targeted mutagenesis.  相似文献   

4.
Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers. Thus, similarly to its activity on UV-irradiated single-stranded DNA, DNA polymerase III holenzyme can bypass pyrimidine photodimers in the more complex replicative form --->single-strand replication, which involves, in addition to the polymerizing activity, the unwinding of the duplex by the rep helicase and the participation of a more complex multiprotein replisome.  相似文献   

5.
Tomer G  Livneh Z 《Biochemistry》1999,38(18):5948-5958
DNA damage-induced mutations are formed when damaged nucleotides present in single-stranded DNA are replicated. We have developed a new method for the preparation of gapped plasmids containing site-specific damaged nucleotides, as model DNA substrates for translesion replication. Using these substrates, we show that the DNA polymerase III holoenzyme from Escherichia coli can bypass a synthetic abasic site analogue with high efficiency (30% bypass in 16 min), unassisted by other proteins. The theta and tau subunits of the polymerase were not essential for bypass. No bypass was observed when the enzyme was assayed on a synthetic 60-mer oligonucleotide carrying the same lesion, and bypass on a linear gapped plasmid was 3-4-fold slower than on a circular gapped plasmid. There was no difference in the bypass when standing-start and running-start replication were compared. A comparison of translesion replication by DNA polymerase I, DNA polymerase II, the DNA polymerase III core, and the DNA polymerase III holoenzyme clearly showed that the DNA polymerase III holoenzyme was by far the most effective in performing translesion replication. This was not only due to the high processivity of the pol III holoenzyme, because increasing the processivity of pol II by adding the gamma complex and beta subunit, did not increase bypass. These results support the model that SOS regulation was imposed on a fundamentally constitutive translesion replication reaction to achieve tight control of mutagenesis.  相似文献   

6.
Overproduction of the beta subunit of DNA polymerase III holoenzyme caused a 5- to 10-fold reduction of UV mutagenesis along with a slight increase in sensitivity to UV light in Escherichia coli. The same effects were observed in excision-deficient cells, excluding the possibility that they were mediated via changes in excision repair. In contrast, overproduction of the alpha subunit of the polymerase did not influence either UV mutagenesis or UV sensitivity. The presence of the mutagenesis proteins MucA and MucB expressed from a plasmid alleviated the effect of overproduced beta on UV mutagenesis. We have previously suggested that DNA polymerase III holoenzyme can exist in two forms: beta-rich form unable to bypass UV lesions and a beta-poor form capable of bypassing UV lesions (O. Shavitt and Z. Livneh, J. Biol. Chem. 264:11275-11281, 1989). The beta-poor form may be related to an SOS form of DNA polymerase III designed to perform translesion polymerization under SOS conditions and thereby generate mutations. On the basis of this model, we propose that the overproduced beta subunit affects the relative abundance of the regular replicative beta-rich polymerase and the SOS bypass-proficient polymerase by sequestering the polymerase molecules to the beta-rich form and blocking the SOS form.  相似文献   

7.
Purified DNA polymerase III holoenzyme (holoenzyme) was separated by glycerol gradient sedimentation into the beta subunit and the subassembly that lacks it (pol III). In the presence of ATP, beta subunit dimer dissociated from holoenzyme with a KD of 1 nM; in the absence of ATP, the KD was greater than 5 nM. The beta subunit was known to remain tightly associated in the holoenzyme upon formation of an initiation complex with a primed template and during the course of replication. With separation from the template, holoenzyme dissociated into beta and pol III. Cycling to a new template depended on the reformation of holoenzyme. Holoenzyme was in equilibrium with pol III and the beta subunit in crude enzyme fractions as well as in pure preparations.  相似文献   

8.
UV mutagenesis in E. coli is believed to occur in two discrete steps. The second step involves continued DNA synthesis beyond a blocking lesion in the template strand. This bypass step requires induced levels of umuD and umuC gene products and activated recA protein. DNA polymerase III may be involved since a dnaE mutator strain (believed to have defective base selection) is associated with enhanced UV mutagenesis in conjunction with a genetic background permitting the bypass step. In non-UV-mutable umu and lexA strains, UV mutagenesis can be demonstrated if delayed photorevesal is given. This is interpreted as indicating that an earlier misincorporation step can occur in such strains but the resulting mutations do not survive because the bypass step is blocked. The misincorporation step does not require any induced SOS gene products and can occur either at the replication fork or during repair replication following excision of a DNA lesion. Neither a dnaE mutator gene (leading to a defective subunit of DNA polymerase III holoenzyme) nor a mutD5 mutator gene (leading to a defective ε proofreading subunit) had any effect on he misincorporation step. Although this is consistent with DNA polymerase III holoenzyme not being involved in the misincorporation step, other interpretations involving the inhibition of ε proofreading activity by recA protein are possible.

In vitro studies are reported in which sites of termination of synthesis by DNA polymerase III holoenzyme on UV-irradiated M13 mp8 DNA were examined in the presence of inhibitors of the 3′–5′ proofreading exonuclease (including recA protein). No evidence was found for incorporation of bases opposite photoproducts suggesting that either inhibition is more complete in the cell and/or that other factors are involved in the misincorporation step.  相似文献   


9.
DNA polymerase III holoenzyme was assembled from pure proteins onto a primer template scaffold. The assembly process could be divided into two stages. In the time-consuming first stage, beta subunit and gamma.delta subunit complex were required in forming a tightly bound ATP-activated "preinitiation complex" with a single-stranded DNA bacteriophage circle uniquely primed with a synthetic pentadecadeoxyribonucleotide. This finding substantiates an earlier study using crude protein preparations in a homopolymer system lacking Escherichia coli single-stranded DNA binding protein (Wickner, S. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3511-3515). In the second stage, the polymerase III core and the tau subunit rapidly seek out and bind the preinitiation complex to form DNA polymerase III holoenzyme capable of rapid and entirely processive replication of the circular DNA. ATP is not required beyond formation of the preinitiation complex. It is remarkable that the fully assembled DNA polymerase III holoenzyme is so stably bound to the primed DNA circle (4-min half-time of dissociation), yet upon completing a round of synthesis the polymerase cycles within 10 s to a new preinitiation complex on a challenge primed DNA circle. Efficient polymerase cycling only occurred when challenge primed DNA was endowed with a preinitiation complex implying that cycling is mediated by a polymerase subassembly which dissociates from its accessory proteins and associates with a new preinitiation complex. These subunit dynamics suggest mechanisms for polymerase cycling on the lagging strand of replication forks in a growing chromosome.  相似文献   

10.
We have previously demonstrated that the addition of a stoichiometric excess of the beta subunit of Escherichia coli DNA polymerase III holoenzyme to DNA polymerase III or holoenzyme itself can lead to an ATP-independent increase in the processivity of these enzyme forms (Crute, J. J., LaDuca, R. J., Johanson, K. O., McHenry, C. S., and Bambara, R. A. (1983) J. Biol. Chem. 258, 11344-11349). Here, we show that the beta subunit can interact directly with the catalytic core of the holoenzyme, DNA polymerase III, generating a new form of the enzyme with enhanced catalytic and processive capabilities. The addition of saturating levels of the beta subunit to the core DNA polymerase III enzyme results in as much as a 7-fold stimulation of synthetic activity. Two populations of DNA products were generated by the DNA polymerase III X beta enzyme complex. Short products resulting from the addition of 5-10 nucleotides/primer fragment were generated by DNA polymerase III in the presence and absence of added beta subunit. A second population of much longer products was generated only in beta-supplemented DNA polymerase III reactions. The DNA polymerase III-beta reaction was inhibited by single-stranded DNA binding protein and was unaffected by ATP, distinguishing it from the holoenzyme-catalyzed reaction. Complex formation of the DNA polymerase III core enzyme with beta increased the residence time of the enzyme on synthetic DNA templates. Our results demonstrate that the beta stimulation of DNA polymerase III can be attributed to a more efficient and highly processive elongation capability of the DNA polymerase III X beta complex. They also prove that at least part of beta's normal contribution to the DNA polymerase III holoenzyme reaction takes place through interaction with DNA polymerase III core enzyme components to produce the essential complex necessary for efficient elongation in vivo.  相似文献   

11.
ATP (or dATP) stimulates DNA synthesis by DNA polymerase III holoenzyme (holoenzyme) on the synthetic template-primer poly(dA).oligo(dT)12. Nonhydrolyzable ATP analogs and other natural (deoxy)ribonucleoside triphosphates are inactive. Because the nonhydrolyzable analog 5'-deoxyadenylylimidodiphosphate is efficiently used by holoenzyme for incorporation, the ATP (or dATP) requirement for activation of replication of natural DNA could be determined. Analysis of lag times in DNA synthesis and isolation of intermediates showed that ATP (or dATP) is required in the formation of an initiation complex between holoenzyme and primed DNA template, but not for subsequent DNA synthesis. ATP is bound to holoenzyme in the absence of DNA with a KD value of 0.8 microM; 2 to 3 molecules of ATP per molecule of holoenzyme are bound without apparent cooperativity. Binding of ATP to DNA polymerase III (holoenzyme minus beta subunit) is weak (KD greater than 5 microM) and binding to the beta subunit alone is not observed. However, holoenzyme reconstituted by mixing DNA polymerase III with beta subunit binds ATP as tightly (KD = 0.6 microM) as the original holoenzyme.  相似文献   

12.
Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) will substitute for ATP in the formation of an initiation complex between the DNA polymerase III holoenzyme of Escherichia coli and primed DNA. The initiation complex formed in the presence of ATP gamma S between the DNA polymerase III holoenzyme and single-stranded DNA-binding protein-encoated primed M13 Gori DNA is stabile and isolable by gel filtration at room temperature. Upon addition of the four required deoxynucleoside triphosphates, this complex is rapidly converted to the duplex replicative form without dissociation of the polymerase. Initiation complexes formed in the presence of either ATP gamma S or ATP are indistinguishable by their resistance to antibody directed against the beta subunit of the holoenzyme and by their ability to elongate without further activation. A 2-fold difference was observed, however, in both the extent of initiation complex formation and in the dissociation of initiation complexes once formed. This difference is discussed in the light of previous proposals regarding a dimeric polymerase capable of replicating both strands at a replication fork concurrently.  相似文献   

13.
DNA polymerase III holoenzyme (holoenzyme) is the 10-subunit replicase of the Escherichia coli chromosome. In this report, pure preparations of delta, delta', and a gamma chi psi complex are resolved from the five protein gamma complex subassembly. Using these subunits and other holoenzyme subunits isolated from overproducing plasmid strains of E. coli, the rapid and highly processive holoenzyme has been reconstituted from only five pure single subunits: alpha, epsilon, gamma, delta, and beta. The preceding report showed that of the three subunits in the core polymerase, only a complex of alpha (DNA polymerase) and epsilon (3'-5' exonuclease) are required to assemble a processive holoenzyme on a template containing a preinitiation complex (Studwell, P.S., and O'Donnell, M. (1990) J. Biol. Chem. 265, 1171-1178). This report shows that of the five proteins in the gamma complex only a heterodimer of gamma and delta is required with the beta subunit to form the ATP-activated preinitiation complex with a primed template. Surprisingly, the delta' subunit does not form an active complex with gamma but forms a fully active heterodimer complex with the tau subunit (as does delta). Hence, the tau delta' and gamma delta heterodimers are fully active in the preinitiation complex reaction with beta and primed DNA. Holoenzymes reconstituted using the alpha epsilon complex, beta subunit, and either gamma delta or tau delta' are fully processive in DNA synthesis, and upon completing the template they rapidly cycle to a new primed template endowed with a preinitiation complex clamp. Since the holoenzyme molecule contains all of these accessory subunits (gamma, delta, tau, delta', and beta) in all likelihood it has the capacity to form two preinitiation complex clamps simultaneously at two primer termini. Two primer binding components within one holoenzyme may mediate its rapid cycling to multiple primers on the lagging strand and also provides functional evidence for the hypothesis of holoenzyme as a dimeric polymerase capable of simultaneous replication of both leading and lagging strands of a replication fork.  相似文献   

14.
Purified RecA protein from Escherichia coli inhibited 5-10-fold the rate of in vitro replication of both unirradiated and UV-irradiated single-stranded DNA (ssDNA) with DNA polymerase III holoenzyme. Maximal inhibition occurred at a ratio of 1 molecule of RecA per 2-4 nucleotides of DNA, and it affected primarily the initiation of elongation on primed ssDNA. Adding single-strand DNA-binding protein (SSB) caused a relief of inhibition. Under conditions when there was enough SSB to cover the ssDNA completely, RecA protein had no effect on initiation, elongation or dissociation steps of replication. These observations together with data from in vivo studies suggest a role for RecA protein in the arrest of DNA replication observed in cells exposed to UV-radiation and a variety of chemical carcinogens.  相似文献   

15.
B P Glover  C S McHenry 《Cell》2001,105(7):925-934
The DNA Polymerase III holoenzyme forms initiation complexes on primed DNA in an ATP-dependent reaction. We demonstrate that the nonhydrolyzable ATP analog, ATP gamma S, supports the formation of an isolable leading strand complex that loads and replicates the lagging strand only in the presence of ATP, beta, and the single-stranded DNA binding protein. The single endogenous DnaX complex within DNA polymerase III holoenzyme assembles beta onto both the leading and lagging strand polymerases by an ordered mechanism. The dimeric replication complex disassembles in the opposite order from which it assembled. Upon ATP gamma S-induced dissociation, the leading strand polymerase is refractory to disassembly allowing cycling to occur exclusively on the lagging strand. These results establish holoenzyme as an intrinsic asymmetric dimer with distinguishable leading and lagging strand polymerases.  相似文献   

16.
In the presence of ATP, the beta subunit of the Escherichia coli DNA polymerase III holoenzyme can induce a stable initiation complex with the other holoenzyme subunits and primed DNA that is capable of highly processive synthesis. We have recently demonstrated that the ATP requirement for processive synthesis can be bypassed by an excess of the beta subunit (Crute, J., LaDuca, R., Johanson, K., McHenry, C., and Bambara, R. (1983) J. Biol. Chem. 258, 11344-11349). To examine the complex formed with excess beta subunit, and the lengths of the products of processive synthesis, we have designed a uniquely primed DNA template. Poly(dA)4000 was tailed with dCTP by terminal deoxynucleotidyl transferase and the resulting template annealed to oligo(dG)12-18. In the presence of excess beta, the lengths of processively extended primers nearly equaled the full-length of the DNA template. Similar length synthesis occurred in the presence or absence of spermidine or single-stranded DNA-binding protein. When the beta subunit was present at normal holoenzyme stoichiometry it could induce highly processive synthesis without ATP, although inefficiently. Both ATP and excess beta increased the amount of initiation complex formation, but complexes produced with excess beta did so without the time delay observed with ATP, suggesting different mechanisms for formation. Almost 50% of initiation complexes formed without ATP survived a 30-min incubation with anti-beta IgG, reflecting a stability similar to those formed with ATP. The ability to form initiation complexes in the absence of ATP permitted the demonstration that cycling of the holoenzyme to a new primer, after chain termination with a dideoxynucleotide, is not affected by the presence of ATP.  相似文献   

17.
Daube SS  Tomer G  Livneh Z 《Biochemistry》2000,39(2):348-355
Mutations caused by DNA damage lead to the development of cancer. The critical step in the formation of these mutations is the replication of unrepaired lesions in DNA by DNA polymerases, a process termed translesion replication. Using a newly developed method for preparation of gapped plasmids, containing a site-specific synthetic abasic site, we analyzed translesion replication with purified mammalian DNA polymerases delta and beta. DNA polymerase delta was found to be unable to replicate through the abasic site. Addition of the sliding DNA clamp PCNA, the clamp loader RFC, and ATP caused a drastic 30-fold increase in translesion replication. Thus, similar to Escherichia coli DNA polymerase III, the processivity accessory proteins enable DNA polymerase delta to bypass blocking lesions. Under comparable conditions, DNA polymerase beta was unable to bypass the abasic site, unless its concentration was greatly increased. Analysis of translesion replication products revealed a marked difference in the specificity of bypass: whereas 90% of bypass events by DNA polymerase delta holoenzyme involved insertion of a dAMP residue opposite the abasic site, DNA polymerase beta tended to skip over the abasic site, producing mainly minus frameshifts (73%). The significance of these results for in vivo translesion replication is discussed.  相似文献   

18.
In Escherichia coli, the circular beta sliding clamp facilitates processive DNA replication by tethering the polymerase to primer-template DNA. When synthesis is complete, polymerase dissociates from beta and DNA and cycles to a new start site, a primed template loaded with beta. DNA polymerase cycles frequently during lagging strand replication while synthesizing 1-2-kilobase Okazaki fragments. The clamps left behind remain stable on DNA (t(12) approximately 115 min) and must be removed rapidly for reuse at numerous primed sites on the lagging strand. Here we show that delta, a single subunit of DNA polymerase III holoenzyme, opens beta and slips it off DNA (k(unloading) = 0.011 s(-)(1)) at a rate similar to that of the multisubunit gamma complex clamp loader by itself (0.015 s(-)(1)) or within polymerase (pol) III* (0.0065 s(-)(1)). Moreover, unlike gamma complex and pol III*, delta does not require ATP to catalyze clamp unloading. Quantitation of gamma complex subunits (gamma, delta, delta', chi, psi) in E. coli cells reveals an excess of delta, free from gamma complex and pol III*. Since pol III* and gamma complex occur in much lower quantities and perform several DNA metabolic functions in replication and repair, the delta subunit probably aids beta clamp recycling during DNA replication.  相似文献   

19.
We report here our initial success in using fluorescence energy transfer to map the position of the subunits of the DNA polymerase III holoenzyme within initiation complexes formed on primed DNA. Using primers containing a fluorescent derivative 3 nucleotides from the 3'-terminus and acceptors of fluorescence energy transfer located on Cys333 of the beta subunit, a donor-acceptor distance of 65 A was measured. Coupling this distance with other information enabled us to propose a model for the positioning of beta within initiation complexes. Examination of the fluorescence properties of a labeled primer with the unlabeled beta subunit and other assemblies of DNA polymerase III holoenzyme subunits allowed us to distinguish all of the known intermediates of the holoenzyme-catalyzed reaction. Specific fluorescence changes could be assigned for primer annealing, Escherichia coli single-stranded DNA-binding protein binding, 3'----5' exonucleolytic hydrolysis of the primer, DNA polymerase III* binding, initiation complex formation upon the addition of beta in the presence of ATP, and DNA elongation. These fluorescence changes are sufficiently large to support future detailed kinetic studies. Particularly interesting was the difference in fluorescence changes accompanying initiation complex formation as compared to binding of DNA polymerase III holoenzyme subunit assemblies. Initiation complex formation resulted in a strong fluorescence enhancement. Binding of DNA polymerase III* led to a fluorescence quenching, and transfer of beta to primed DNA by the gamma delta complex did not change the fluorescence. This demonstrates a rearrangement of subunits accompanying initiation complex formation. Monitoring fluorescence changes with labeled beta, we have determined that beta binds with a stoichiometry of one monomer/primer terminus.  相似文献   

20.
Replication of DNA lesions leads to the formation of mutations. In Escherichia coli this process is regulated by the SOS stress response, and requires the mutagenesis proteins UmuC and UmuD'. Analysis of translesion replication using a recently reconstituted in vitro system (Reuven, N. B., Tomer, G., and Livneh, Z. (1998) Mol. Cell 2, 191-199) revealed that lesion bypass occurred with a UmuC fusion protein, UmuD', RecA, and SSB in the absence of added DNA polymerase. Further analysis revealed that UmuC was a DNA polymerase (E. coli DNA polymerase V), with a weak polymerizing activity. Upon addition of UmuD', RecA, and SSB, the UmuC DNA polymerase was greatly activated, and replicated a synthetic abasic site with great efficiency (45% bypass in 6 min), 10-100-fold higher than E. coli DNA polymerases I, II, or III holoenzyme. Analysis of bypass products revealed insertion of primarily dAMP (69%), and to a lesser degree dGMP (31%) opposite the abasic site. The UmuC104 mutant protein was defective both in lesion bypass and in DNA synthesis. These results indicate that UmuC is a UmuD'-, RecA-, and SSB-activated DNA polymerase, which is specialized for lesion bypass. UmuC is a member of a new family of DNA polymerases which are specialized for lesion bypass, and include the yeast RAD30 and the human XP-V genes, encoding DNA polymerase eta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号