首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylated bases and sugars in 16-S and 28-S RNA from L cells   总被引:4,自引:0,他引:4  
  相似文献   

2.
3.
The isolation of 5-S ribosomal RNA from plants   总被引:5,自引:0,他引:5  
  相似文献   

4.
5.
6.
7.
8.
9.
The complete nucleotide sequence of 5-S RNA from Bacillus licheniformis was determined by analysis of complete and partial digests obtained with either T1 or pancreatic ribonuclease. The molecule was found to have a length of 116 nucleotides and may possess a minor sequence heterogeneity. There is a large degree of homology between the sequence of B. licheniformis 5-S RNA and those published for 5-S RNA from B. megatherium and B. stearothermophilus. The difference between the three 5-S RNA species are limited mainly to the two terminal and one internal sequence. B. licheniformis 5-S RNA contains the sequence U95-G-A-G-A-G100, which in B. subtilis has been implicated in the processing of precursor 5-S RNA. Possible models for the secondary structure of prokaryotic 5-S RNA are discussed on the basis of the results of limited digestion of B. licheniformis 5-S RNA by ribonuclease T1.  相似文献   

10.
11.
14-S RNA was purified from spinach chloroplasts. It has a molecular weight of 0.43 . 10(6) and the following nucleotide composition: 20% CMP, 23.9% AMP, 24.2% GMP and 31.9% UMP. The accumulation of 14-S RNA in chloroplasts of cotyledons of dark-grown plants is stimulated by light. Conditions are described for the isolation of 14-S RNA in the absence of appreciable fragmentation of chloroplast 23-S rRNA and the evidence that it represents a distinct type of chloroplast RNA is discussed. Translation of 14-S RNA in a protein synthesising system from Escherichia coli gives rise to two polypeptides with molecular weights of 13 200 and 12 600 and the possible role of 14-S RNA as a chloroplast messenger is discussed.  相似文献   

12.
13.
The ribonucleoprotein complex between 5-S RNA and its binding protein (5-S RNA . protein complex) of yeast ribosomes was released from 60-S subunits with 25 mM EDTA and the protein component was purified by chromatography on DEAE-cellulose. This protein, designated YL3 (Mr = 36000 on dodecylsulfate gels), was relatively insoluble in neutral solutions (pH 4--9) and migrated as one of four acidic 60-S subunit proteins when analyzed by the Kaltschmidt and Wittman two-dimensional gel system. Amino acid analyses indicated lower amounts of lysine and arginine than most ribosomal proteins. Sequence homology was observed in the N terminus of YL3, and two prokaryotic 5-S RNA binding proteins, EL18 from Escherichia coli and HL13 from Halobacterium cutirubrum: Ala1-Phe2-Gln3-Lys4-Asp5-Ala6-Lys7-Ser8-Ser9-Ala10-Tyr11-Ser12-Ser13-Arg14-Phe15-Gln16-Tyr17-Pro18-Phe19-Arg20-Arg21-Arg22-Arg23-Glu24-Gly25-Lys26-Thr27-Asp28-Tyr29-Tyr35; of particular interest was homology in the cluster of basic residues (18--23). Since the protein contained one methionine residue it could be split into two fragments, CN1 (Mr = 24700) and CN2 (Mr = 11300) by CNBr treatment; the larger fragment originated from the N terminus. The N-terminal amino acid sequence of CN2 shared a limited sequence homology with an internal portion of a second 5-S RNA binding protein from E. coli, EL5, and, based also on the molecular weights of the proteins and studies on the protein binding sites in 5-S RNAs, a model for the evolution of the eukaryotic 5-S RNA binding protein is suggested in which a fusion of the prokaryotic sequences may have occurred. Unlike the native 5-S RNA . protein complex, a variety of RNAs interacted with the smaller CN2 fragment to form homogeneous ribonucleoprotein complexes; the results suggest that the CN1 fragment may confer specificity on the natural 5-S RNA-protein interaction.  相似文献   

14.
15.
The 5' and 3'-terminal nucleotide sequences of 17-S rRNA and its immediate precursor 18-S RNA from the yeast Saccharomyces carlsbergensis have been analysed. Identification of the terminal oligonucleotides, as present in Ti ribonuclease digests, was performed by diagonal procedures. The major (molar yield 0.9) 5'-terminal oligonucleotide (molar yield 0.15) with the overall composition pU (U2,C2)G was observed. 18-S precursor RNA was found to contain the same 5'-terminal sequences as 17-S rRNA. However, the 3'-terminal sequences of the two types of RNA appeared to be different. The 17-S rRNA yields the oligonucleotide A-U-C-A-U-U-AOH while at least half of the 18-S RNA molecules contain the sequence U-U-U-C-A-A-U-AOH. In addition 18-S RNA yields several minor 3'-terminal oligonucleotides which appear to be structurally related to the major 3'-terminal sequence. These results demonstrate that the extra nucleotides in 18-S RNA relative to 17-S RNA are located exclusively at the 3'-terminus of the 18-S RNA molecule. The possibility that the 3'-terminal nucleotide sequence of 18-S RNA plays a role in the maturation process is discussed.  相似文献   

16.
The topography and the length of the non-ribosomal sequences present in 7-S RNA, the immediate precursor of 5.8-S ribosomal RNA, from the yeast Saccharomyces carlsbergensis were determined by analyzing the nucleotide sequences of the products obtained after complete digestion of 7-S RNA with RNase T1. The results show that 7-S RNA contains approximately 150 non-ribosomal nucleotides. The majority (90%) of the 7-S RNA molecules was found to have the same 5'-terminal pentadecanucleotide sequence as mature 5.8-S rRNA. The remaining 10% exhibited 5'-terminal sequences identical to those of 5.9-S RNA, which has the same primary structure as 5.8-S rRNA except for a slight extension at the 5' end [Rubin, G.M. (1974) Eur. J. Biochem. 41, 197--202]. These data show that the non-ribosomal nucleotides present in 7-S RNA are all located 3'-distal to the mature 5.8-S rRNA sequence. Moreover, it can be concluded that 5.9-S RNA is a stable rRNA rather than a precursor of 5.8-S rRNA. The 3'-terminal sequence of 5.8-S rRNA (U-C-A-U-U-UOH) is recovered in a much longer oligonucleotide in the T1 RNase digest of 7-S RNA having the sequence U-C-A-U-U-U-(C-C-U-U-C-U-C)-A-A-A-C-A-(U-U-C-U)-Gp. The sequences enclosed in brackets are likely to be correct but could not be established with absolute certainty. The arrow indicates the bond cleaved during processing. The octanucleotide sequence -A-A-A-C-A-U-U-C- located near the cleavage site shows a remarkable similarity to the 5'-terminal octanucleotide sequence of 7-S RNA (-A-A-A-C-U-U-U-C-). We suggest that these sequences may be involved in determining the specificity of the cleavages resulting in the formation of the two termini of 5.8-S rRNA.  相似文献   

17.
18.
19.
20.
Distribution of 5-S RNA in erythroid cells   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号