首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Interferon regulatory factor 7 (IRF-7) is implicated in the regulation of Epstein-Barr virus (EBV) latency. EBV transforms primary B cells, and the major EBV oncoprotein, latent membrane protein 1 (LMP-1), is required for the process. LMP-1 both induces the expression of IRF-7 and activates the IRF-7 protein by phosphorylation and nuclear translocation. Here we report that the expression of IRF-7 is increased in EBV-immortalized B lymphocytes compared with that in primary B cells. IRF-7 was phosphorylated and predominantly localized in the nucleus in the immortalized cells. The expression of IRF-7 was detected in 19 of 27 specimens of primary lymphomas of the human central nervous system by immunohistochemical analysis. The association between LMP-1 and IRF-7 was statistically highly significant for these specimens. An appreciable amount of the IRF-7 expressed in lymphoma cells was localized in the nucleus. Furthermore, IRF-7 promoted the anchorage-independent growth of NIH 3T3 cells. LMP-1 and IRF-7 showed additive effects on the growth transformation of NIH 3T3 cells. IRF-7-expressing NIH 3T3 cells formed tumors in athymic mice. Thus, IRF-7 has oncogenic properties and, along with LMP-1, may mediate or potentiate the EBV transformation process in the pathogenesis of EBV-associated lymphomas.  相似文献   

3.
4.
5.
This report demonstrates that in addition to interferons and cytokines, members of the TGF beta superfamily such as Mullerian inhibiting substance (MIS) and activin A also regulate IRF-1 expression. MIS induced IRF-1 expression in the mammary glands of mice in vivo and in breast cancer cells in vitro and stimulation of IRF-1 by MIS was dependent on activation of the NF kappa B pathway. In the rat mammary gland, IRF-1 expression gradually decreased during pregnancy and lactation but increased at involution. In breast cancer, the IRF-1 protein was absent in 13% of tumors tested compared with matched normal glands. Consistent with its growth suppressive activity, expression of IRF-1 in breast cancer cells induced apoptosis. Treatment of breast cancer cells with MIS and interferon gamma (IFN-gamma) co-stimulated IRF-1 and CEACAM1 expression and synergistic induction of CEACAM1 by a combination of MIS and IFN-gamma was impaired by antisense IRF-1 expression. Furthermore, a combination of IFN-gamma and MIS inhibited the growth of breast cancer cells to a greater extent than either one alone. Both reagents alone significantly decreased the fraction of cells in the S-phase of the cell cycle, an effect not enhanced when they were used in combination. However, MIS promoted IFN-gamma-induced apoptosis demonstrating a functional interaction between these two classes of signaling molecules in regulation of breast cancer cell growth.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Interferon regulatory factor 1 (IRF-1) is a protein that binds to cis-elements within the promoter of interferon (IFN)-beta and some IFN-inducible genes. We used a human fibroblast line, GM-637, to generate stable transfectants constitutively expressing IRF-1 mRNA in either the sense or antisense orientation. Upon induction with poly-(I).poly(C) or Newcastle disease virus, cells expressing sense IRF-1 mRNA produced significantly higher levels of IFN-beta mRNA and protein than control cells, whereas cells expressing antisense IRF-1 mRNA produced little or no IFN-beta mRNA and protein. Furthermore, clear differences were seen among the transfectants in the level of expression of two IFN-induced genes (2'-5'-oligoadenylate synthetase and class I HLA). Our data show that IRF-1 is essential for the induced expression of the IFN-beta gene. The results also indicate an important role of IRF-1 in the expression of IFN-inducible genes and suggest a role for IRF-1 in many other cytokine actions.  相似文献   

14.
Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20-40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106-140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or "docking" of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase.  相似文献   

15.
16.
17.
PIAS3 induces SUMO-1 modification and transcriptional repression of IRF-1   总被引:2,自引:0,他引:2  
Nakagawa K  Yokosawa H 《FEBS letters》2002,530(1-3):204-208
  相似文献   

18.
Natural infection with measles virus (MeV) is initiated when the virus reaches epithelial cells in the respiratory tract, oropharynx, or conjunctivae. Human epithelial cells infected with MeV frequently show growth suppression. In this study, we investigated the possible mechanisms for this suppression. The bronchiolar epithelial cell A549 showed growth arrest in G(0)/G(1) following MeV infection or treatment with gamma interferon (IFN-gamma). IFN regulatory factor-1 (IRF-1) was upregulated during MeV infection, although A549 did not produce IFN-gamma. Cells of the cervical squamous cell line SiHa persistently infected with various strains of MeV displayed slower growth than uninfected SiHa cells, although the growth rates varied depending on the MeV strain. Transfection of antisense-oriented IRF-1 cDNA released the MeV-infected SiHa cells from growth suppression. Although these infected cells did not produce IFN-gamma and suppressed IFN-alpha/beta-induced Jak1 phosphorylation, Jak1 was constitutively phosphorylated. The growth rates negatively correlated with levels of both IRF-1 expression and constitutively phosphorylated Jak1. These results indicate that MeV upregulates IRF-1 in a manner that is independent of IFN but dependent on the JAK/STAT pathway. This induction of IRF-1 appears to suppress cell growth, although the extent seems to vary among MeV strains.  相似文献   

19.
20.
The rotavirus nonstructural protein NSP1 is the least conserved protein in the rotavirus genome, and its function in the replication cycle is not known. We employed NSP1 as bait in the yeast two-hybrid interaction trap to identify candidate cellular partners of NSP1 that may provide clues to its function. Interferon regulatory factor 3 (IRF-3) was identified as an NSP1 interactor. NSP1 synthesized in rotavirus-infected cells bound IRF-3 in a glutathione S-transferase pull-down assay, indicating that the interaction was not unique to the two-hybrid system. NSP1 of murine rotavirus strain EW also interacted with IRF-3. NSP1 deletion and point mutants were constructed to map domains important in the interaction between NSP1 and IRF-3. The data suggest that a binding domain resides in the C terminus of NSP1 and that the N-terminal conserved zinc finger is important but not sufficient to mediate binding to IRF-3. We predict that a role for NSP1 in rotavirus-infected cells is to inhibit activation of IRF-3 and diminish the cellular interferon response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号