首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope.  相似文献   

2.
Ribosome inactivating proteins (RIPs) inhibit protein synthesis depurinating a conserved residue in the sarcin/ricin loop of ribosomes. Some RIPs are only active against eukaryotic ribosomes, but other RIPs inactivate with similar efficiency prokaryotic and eukaryotic ribosomes, suggesting that different RIPs would interact with different proteins. The SRL in Trypanosoma cruzi ribosomes is located on a 178b RNA molecule named 28Sδ. In addition, T. cruzi ribosomes are remarkably resistant to TCS. In spite of these peculiarities, we show that TCS specifically depurinate the predicted A51 residue on 28Sδ. We also demonstrated that the C-terminal end of ribosomal P proteins is needed for full activity of the toxin. In contrast to TCS, PAP inactivated efficiently T.cruzi ribosomes, and most importantly, does not require from the C-terminal end of P proteins. These results could explain, at least partially, the different selectivity of these toxins against prokaryotic and eukaryotic ribosomes.  相似文献   

3.
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inactivates ribosome by enzymatically depurinating the A4324 at the α-sarcin/ricin loop of 28S rRNA. We have shown in this and previous studies that TCS interacts with human acidic ribosomal proteins P0, P1 and P2, which constitute the lateral stalk of eukaryotic ribosome. Deletion mutagenesis showed that TCS interacts with the C-terminal tail of P2, the sequences of which are conserved in P0, P1 and P2. The P2-binding site on TCS was mapped to the C-terminal domain by chemical shift perturbation experiments. Scanning charge-to-alanine mutagenesis has shown that K173, R174 and K177 in the C-terminal domain of TCS are involved in interacting with the P2, presumably through forming charge–charge interactions to the conserved DDD motif at the C-terminal tail of P2. A triple-alanine variant K173A/R174A/K177A of TCS, which fails to bind P2 and ribosomal stalk in vitro, was found to be 18-fold less active in inhibiting translation in rabbit reticulocyte lysate, suggesting that interaction with P-proteins is required for full activity of TCS. In an analogy to the role of stalk proteins in binding elongation factors, we propose that interaction with acidic ribosomal stalk proteins help TCS to locate its RNA substrate.  相似文献   

4.
The dodecamer universal minicircle sequence is a conserved sequence present in minicircles of trypanosomatid kinetoplast DNA studied so far. This sequence is recognised by a protein named universal minicircle sequence binding protein, described for Crithidia fasciculata, involved in minicircle DNA replication. We have identified a Trypanosoma cruzi gene homologue of the Crithidia fasciculata universal minicircle sequence binding protein. Similar to the Crithidia fasciculata universal minicircle sequence binding protein, the Trypanosoma cruzi protein, named PDZ5, contains five zinc finger motifs. Pulsed field gel electrophoresis indicated that the pdz5 gene is located in the chromosomal band XX of the Trypanosoma cruzi genome. The predicted amino acid sequence of PDZ5 shows a high degree of similarity with several trypanosomatid zinc finger proteins. Specific antibody raised against Crithidia fasciculata universal minicircle sequence binding protein recognises both the recombinant and endogenous PDZ5. The complete pdz5 coding sequence cloned in bacteria expresses a recombinant PDZ5 protein that binds specifically to the universal minicircle sequence dodecamer. These data strongly suggest that PDZ5 represents a Trypanosoma cruzi universal minicircle sequence binding protein.  相似文献   

5.
In a previous study from this laboratory, presumptive ribosomal ribonucleic acid (RNA) species were identified in the total cellular RNA directly extracted from intact cells of the trypanosomatid protozoan Crithidia fasciculata (M. W. Gray, Can. J. Biochem. 57:914-926, 1979). The results suggested that the C. fasciculata ribosome might be unusual in containing three novel, low-molecular-weight ribosomal RNA components, designated e, f, and g (apparent chain lengths 240, 195, and 135 nucleotides, respectively), in addition to analogs of eucaryotic 5S (species h) and 5.8S (species i) ribosomal RNAs. In the present study, all of the presumptive ribosomal RNAs were indeed found to be associated with purified C. fasciculata ribosomes, and their localization was investigated in subunits produced under different conditions of ribosome dissociation. When ribosomes were dissociated in a high-potassium (880 mM K+, 12.5 mM Mg2+) medium, species e to i were all found in the large ribosomal subunit, which also contained an additional, transfer RNA-sized component (species j). However, when subunits were prepared in a low-magnesium (60 mM K+, 0.1 mM Mg2+) medium, two of the novel species (e and g) did not remain with the large subunit, but were released, apparently as free RNAs. Control experiments have eliminated the possibility that the small RNAs are generated by quantitative and highly specific (albeit artifactual) ribonuclease cleavage of large ribosomal RNAs during isolation. In terms of RNA composition and dissociation properties, therefore, the ribosome of C. fasciculata is the most "atypical" eucaryotic ribosome yet described. These observations raise interesting questions about the function and evolutionary origin of C. fasciculata ribosomes and about the organization and expression of ribosomal RNA genes in this organism.  相似文献   

6.
Tittawella I  Baranov V 《FEBS letters》2000,470(3):319-324
There is growing evidence in support of mitochondrial translation in trypanosomes but mitoribosomes have never been characterized or localized in these parasites. On RNA-protein blots we identified several proteins from the trypanosomatid Crithidia fasciculata which bound the parasite's 12S and 9S mitochondrial ribosomal RNAs. Two of these proteins had significant amino acid sequence homology to riboproteins S8 and S21 across phyla. Immunoelectron microscopy revealed that antibodies raised against the two proteins react with matrix components in the C. fasciculata mitochondrion. Our data thus provide, we believe for the first time, evidence for the presence of riboproteins within a trypanosomatid mitochondrion, bound, possibly, to the 12S and 9S RNAs. The proteins were immunologically related to two cytosolic riboproteins which were also of identical size, suggesting the interesting possibility that the same set of riboproteins is shared between the cytosol and the mitochondrion in this parasite.  相似文献   

7.
Abstract Molecular expression cloning techniques have revealed that patients with chronic Chagas' heart disease (cChHD) present a strong humoral response against the cloned C-terminal portions of the four Trypanosoma cruzi ribosomal P proteins TcP1, TcP2α (TcP2b), TcP2β (TcPJL5), and TcP0. This protein family presents several features that may be important in the immunopathology of Chagas disease. Their exposed location on the ribosome, and the amplification of their parasite-specific, Ser free C-terminal domain, generate a strong anti-parasite P response that may induce anti-P autoimmunity. Evidences indicate that the serological pattern of the anti-P response from chagasic patients may be the consequence of a chronic immunization with T. cruzi ribosomal antigens.  相似文献   

8.
Ribosome-inactivating proteins (RIPs) inhibit protein synthesis by enzymatically depurinating a specific adenine residue at the sarcin-ricin loop of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation centre of the ribosome. Here, we present the 2.2 Å crystal structure of trichosanthin (TCS) complexed to the peptide SDDDMGFGLFD, which corresponds to the conserved C-terminal elongation factor binding domain of the ribosomal P protein. The N-terminal region of this peptide interacts with Lys173, Arg174 and Lys177 in TCS, while the C-terminal region is inserted into a hydrophobic pocket. The interaction with the P protein contributes to the ribosome-inactivating activity of TCS. This 11-mer C-terminal P peptide can be docked with selected important plant and bacterial RIPs, indicating that a similar interaction may also occur with other RIPs.  相似文献   

9.
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.  相似文献   

10.
An initial observation concerning the failure of [3H]thymidine at high specific activity to be incorporated into the DNA of Crithidia fasciculata for more than a brief initial period has been correlated with the presence at high specific activity in the organism of a thymidine phosphorylase activity with an equilibrium in the direction of catabolism. This enzyme degrades thymidine to thymine which is not utilized by the organism. The enzyme has also been shown to be present in a number of other trypanosomatids, including the culture forms of Trypanosoma cruzi, where the specific activity was nearly as high as that in C. fasciculata. Evidence is presented that in C. fasciculata, the culture forms of T. cruzi and possibly other species of trypanosomatid, the thymidine phosphorylae, together with a thymidylate phosphatase, forms a catabolic pathway which degrades thymine nucleotides to thymine, which is then excreted. About 60% of the thymine nucleotides made by organisms appear to be metabolized through the pathway, suggesting that their synthesis is not subject to completely effective regulatory control.  相似文献   

11.
Another additional peculiarity in Leishmania will be discussed about of the amino acid divergence rate of three structural proteins: acidic ribosomal P1 and P2b proteins, and histone H3 by using multiple sequence alignment and dendrograms. These structural proteins present a high rate of divergence regarding to their homologous protein in Trypanosoma cruzi. At this regard, L. (V.) peruviana P1 and T. cruzi P1 showed 57.4% of divergence rate. Likewise, L. (V.) braziliensis histone H3 and acidic ribosomal P2 protein exhibited 31.8% and 41.7% respectively of rate of divergence in comparison with their homologous in T. cruzi.  相似文献   

12.
The multi-copy ribosomal P proteins have been identified on the ribosomes of prokaryotic and eukaryotic cells, and their antigenicity is an important feature of human Trypanosoma cruzi infection. In this review, Mariano Levin, Martin Vazquez, Dan Kaplan and Alejandro Schijman give a rational basis for the classification of these proteins, and discuss their inter-relationship.  相似文献   

13.
The ribosomal uL10 protein, formerly known as P0, is an essential element of the ribosomal GTPase-associated center responsible for the interplay with translational factors during various stages of protein synthesis. In eukaryotic cells, uL10 binds two P1/P2 protein heterodimers to form a pentameric P-stalk, described as uL10-(P1-P2)2, which represents the functional form of these proteins on translating ribosomes. Unlike most ribosomal proteins, which are incorporated into pre-ribosomal particles during early steps of ribosome biogenesis in the nucleus, P-stalk proteins are attached to the 60S subunit in the cytoplasm. Although the primary role of the P-stalk is related to the process of translation, other extraribosomal functions of its constituents have been proposed, especially for the uL10 protein; however, the list of its activities beyond the ribosome is still an open question. Here, by the combination of biochemical and advanced fluorescence microscopy techniques, we demonstrate that upon nucleolar stress induction the uL10 protein accumulates in the cytoplasm of mammalian cells as a free, ribosome-unbound protein. Importantly, using a novel approach, FRAP-AC (FRAP after photoConversion), we have shown that the ribosome-free pool of uL10 represents a population of proteins released from pre-existing ribosomes. Taken together, our data indicate that the presence of uL10 on the ribosomes is affected in stressed cells, thus it might be considered as a regulatory element responding to environmental fluctuations.  相似文献   

14.
Lateral ribosomal stalk is responsible for binding and recruiting translation factors during protein synthesis. The eukaryotic stalk consists of one P0 protein with two copies of P1•P2 heterodimers to form a P0(P1•P2)2 pentameric P-complex. Here, we have solved the structure of full-length P1•P2 by nuclear magnetic resonance spectroscopy. P1 and P2 dimerize via their helical N-terminal domains, whereas the C-terminal tails of P1•P2 are unstructured and can extend up to ∼125 Å away from the dimerization domains. 15N relaxation study reveals that the C-terminal tails are flexible, having a much faster internal mobility than the N-terminal domains. Replacement of prokaryotic L10(L7/L12)4/L11 by eukaryotic P0(P1•P2)2/eL12 rendered Escherichia coli ribosome, which is insensitive to trichosanthin (TCS), susceptible to depurination by TCS and the C-terminal tail was found to be responsible for this depurination. Truncation and insertion studies showed that depurination of hybrid ribosome is dependent on the length of the proline-alanine rich hinge region within the C-terminal tail. All together, we propose a model that recruitment of TCS to the sarcin-ricin loop required the flexible C-terminal tail, and the proline-alanine rich hinge region lengthens this C-terminal tail, allowing the tail to sweep around the ribosome to recruit TCS.  相似文献   

15.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

16.
A Crithidia fasciculata 83-kDa protein purified during a separate study of C. fasciculata trypanothione synthetase was shown to have ATPase activity and to belong to the hsp90 family of stress proteins. Because no ATPase activity has previously been reported for the hsp90 class, ATP utilization by C. fasciculata hsp83 was characterized: this hsp83 has an ATPase kcat of 150 min-1 and a Km of 60 microM, whereas the homologous mammalian hsp90 binds ATP but has no ATPase activity. Crithidia fasciculata hsp83 undergoes autophosphorylation on serine and threonine at a rate constant of 3.3 x 10(-3) min-1. Similar analysis was performed on recombinant Trypanosoma cruzi hsp83, and comparable ATPase parameters were obtained (kcat = 100 min-1, Km = 80 microM, kautophosphorylation = 6.3 x 10(-3) min-1). The phosphoenzyme is neither on the ATPase hydrolytic pathway nor does it affect ATPase catalytic efficiency. Both C. fasciculata and T. cruzi hsp83 show up to fivefold stimulation of ATPase activity by peptides of 6-24 amino acids.  相似文献   

17.
High speed centrifugal supernatant fractions of homogenates of a number of trypanosomatids were assayed for thymidylate synthase (5,10-methylene-tetrahydrofolate: dUMP C-methyltransferase, EC 2.1.1.45) activity using the method of Lomax and Greenberg (1967) J. Biol. Chem. 242, 109-113). Similar activities were detected in Crithidia fasciculata, Crithidia oncopelti, the blood forms of Trypanosoma brucei, Trypansoma congolense and Trypanosoma lewisi and the blood, intracellular and culture forms of Trypanosoma cruzi, suggesting that all species synthesize at least some thymidylate de novo. The properties of the activities in C. fasciculata and the three forms of T. cruzi were compared with those of the isofunctional bacterial and mammalian enzymes. The trypanosotamid enzyme was inhibited by Mg2+, was much more sensitive to mercaptoethanol, had higher apparent Km values for substrate (dUMP) and cofactor (tetrahydrofolate), had a higher apparent molecular weight and was markedly more sensitive to inhibition by suramin. It is, therefore a possible target for chemotherapeutic attack, either on its own or in combination with a dihydrofolate reductase inhibitor. No evidence was obtained for the regulation of the trypanosomatid enzyme, either by its product, dTMP, or by dTDP or dTTp. This result agrees with previous studies which suggested that in trypanosomatids, the level of dTMP was regulated, at least in part, by a catabolic pathway consisting of a thymidylate phosphatase and a thymidine phosphorylase which degraded the excess of dTMP to thymine.  相似文献   

18.
Ribosome-inactivating proteins (RIPs) inactivate prokaryotic or eukaryotic ribosomes by removing a single adenine in the large ribosomal RNA. Here we show maize RIP (MOD), an atypical RIP with an internal inactivation loop, interacts with the ribosomal stalk protein P2 via Lys158–Lys161, which is located in the N-terminal domain and at the base of its internal loop. Due to subtle differences in the structure of maize RIP, hydrophobic interaction with the ‘FGLFD’ motif of P2 is not as evidenced in MOD-P2 interaction. As a result, interaction of P2 with MOD was weaker than those with trichosanthin and shiga toxin A as reflected by the dissociation constants (KD) of their interaction, which are 1037.50±65.75 µM, 611.70±28.13 µM and 194.84±9.47 µM respectively.Despite MOD and TCS target at the same ribosomal protein P2, MOD was found 48 and 10 folds less potent than trichosanthin in ribosome depurination and cytotoxicity to 293T cells respectively, implicating the strength of interaction between RIPs and ribosomal proteins is important for the biological activity of RIPs. Our work illustrates the flexibility on the docking of RIPs on ribosomal proteins for targeting the sarcin-ricin loop and the importance of protein-protein interaction for ribosome-inactivating activity.  相似文献   

19.
We have identified a novel 75 kbp large extrachromosomal DNA (LED) which is stably maintained during developmental conversion of Trypanosoma cruzi. It has a covalently closed circular conformation and is not derived from the kinetoplast network. In all T. cruzi strains analysed, LED contains 18S rRNA and spliced leader (sl) sequences. LED from the T. cruzi Y strain contains a minimum of 15 copies of the sl repeat arrayed in a head-to-tail configuration and 50 copies of a 196 bp repeat. LED is also present in Trypanosoma dionisii (subgenus Schizotrypanosoma) and in other members of the family Trypanosomatidae. LED from different T. cruzi strains and from other members of the Trypanosomatidae differ in their content of large ribosomal subunit rRNA sequences and the 196 bp repeat. The presence of LED in four evolutionarily distant trypanosomatid species suggests that it plays an important role in the biology of these parasites.  相似文献   

20.
A single form of serine hydroxymethyltransferase (SHMT) was detected in epimastigotes of Trypanosoma cruzi, in contrast to the three isoforms of the enzyme characterized from another trypanosomatid, Crithidia fasciculata [Capelluto D.G.S., Hellman U., Cazzulo J.J. & Cannata J.J.B. (1999) Mol. Biochem. Parasitol. 98, 187-201]. The T. cruzi SHMT was found to be highly unstable in crude extracts. In the presence of the cysteine proteinase inhibitors N-alpha-p-tosyl-L-lysine chloromethyl ketone and Ltrans-3-carboxyoxiran-2-carbonyl-L-leucylagmatine, however, the enzyme could be purified to homogeneity. Digitonin treatment of intact cells suggested that the enzyme is cytosolic. T. cruzi SHMT presents a monomeric structure shown by the apparent molecular masses of 69 kDa (native) and 55 kDa (subunit) determined by Sephadex G-200 gel filtration and SDS/PAGE, respectively. This is in contrast to the tetrameric SHMTs described in C. fasciculata and other eukaryotes. The enzyme was pyridoxal phosphate-dependent after L-cysteine and hydroxylamine treatments and it was strongly inhibited by the substrate analog folate, which was competitive towards tetrahydrofolate and noncompetitive towards L-serine. Partial sequencing of tryptic internal peptides of the enzyme indicate considerable similarity with other SHMTs, particularly from those of plant origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号