首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four classes of models have been proposed for the internal structure of eukaryotic chromosome fibers--the solenoid, twisted-ribbon, crossed-linker, and superbead models. We have collected electron image and x-ray scattering data from nuclei, and isolated chromatin fibers of seven different tissues to distinguish between these models. The fiber diameters are related to the linker lengths by the equation: D(N) = 19.3 + 0.23 N, where D(N) is the external diameter (nm) and N is the linker length (base pairs). The number of nucleosomes per unit length of the fibers is also related to linker length. Detailed studies were done on the highly regular chromatin from erythrocytes of Necturus (mud puppy) and sperm of Thyone (sea cucumber). Necturus chromatin fibers (N = 48 bp) have diameters of 31 nm and have 7.5 +/- 1 nucleosomes per 10 nm along the axis. Thyone chromatin fibers (N = 87 bp) have diameters of 39 nm and have 12 +/- 2 nucleosomes per 10 nm along the axis. Fourier transforms of electron micrographs of Necturus fibers showed left-handed helical symmetry with a pitch of 25.8 +/- 0.8 nm and pitch angle of 32 +/- 3 degrees, consistent with a double helix. Comparable conclusions were drawn from the Thyone data. The data do not support the solenoid, twisted-ribbon, or supranucleosomal particle models. The data do support two crossed-linker models having left-handed double-helical symmetry and conserved nucleosome interactions.  相似文献   

2.
Fiber diameter, radial distribution of density, and radius of gyration were determined from scanning transmission electron microscopy (STEM) of unstained, frozen-dried chromatin fibers. Chromatin fibers isolated under physiological conditions (ionic strength, 124 mM) from Thyone briareus sperm (DNA linker length, n = 87 bp) and Necturus maculosus erythrocytes (n = 48 bp) were analyzed by objective image-processing techniques. The mean outer diameters were determined to be 38.0 nm (SD = 3.7 nm; SEM = 0.36 nm) and 31.2 nm (SD = 3.6 nm; SEM = 0.32 nm) for Thyone and Necturus, respectively. These data are inconsistent with the twisted-ribbon and solenoid models, which predict constant diameters of approximately 30 nm, independent of DNA linker length. Calculated radial density distributions of chromatin exhibited relatively uniform density with no central hole, although the 4-nm hole in tobacco mosaic virus (TMV) from the same micrographs was visualized clearly. The existence of density at the center of chromatin fibers is in strong disagreement with the hollow-solenoid and hollow-twisted-ribbon models, which predict central holes of 16 and 9 nm for chromatin of 38 and 31 nm diameter, respectively. The cross-sectional radii of gyration were calculated from the radial density distributions and found to be 13.6 nm for Thyone and 11.1 nm for Necturus, in good agreement with x-ray and neutron scattering. The STEM data do not support the solenoid or twisted-ribbon models for chromatin fiber structure. They do, however, support the double-helical crossed-linker models, which exhibit a strong dependence of fiber diameter upon DNA linker length and have linker DNA at the center.  相似文献   

3.
The diameters of chromatin fibers from Thyone briareus (sea cucumber) sperm (DNA linker length, n = 87 bp) and Necturus maculosus (mudpuppy) erythrocytes (n = 48 bp) were investigated. Soluble fibers were frozen into vitrified aqueous solutions of physiological ionic strength (124 mM), imaged by cryo-EM, and measured interactively using quantitative computer image-processing techniques. Frozen-hydrated Thyone and Necturus fibers had significantly different mean diameters of 43.5 nm (SD = 4.2 nm; SEM = 0.61 nm) and 32.0 nm (SD = 3.0 nm; SEM = 0.36 nm), respectively. Evaluation of previously published EM data shows that the diameters of chromatin from a large number of sources are proportional to linker length. In addition, the inherent variability in fiber diameter suggests a relationship between fiber structure and the heterogeneity of linker length. The cryo-EM data were in quantitative agreement with space-filling double-helical crossed-linker models of Thyone and Necturus chromatin. The data, however, do not support solenoid or twisted-ribbon models for chromatin that specify a constant 30 nm diameter. To reconcile the concept of solenoidal packing with the data, we propose a variable-diameter solid-solenoid model with a fiber diameter that increases with linker length. In principle, each of the variable diameter models for chromatin can be reconciled with local variations in linker length.  相似文献   

4.
Electric dichroism and X-ray scattering measurements on solutions of uncondensed and condensed chicken erythrocyte chromatin were interpreted on the basis of model calculations. Information about the state of uncondensed fibers in the conditions of electric dichroism measurements was obtained from scattering patterns recorded as a function of pH, in the presence of spermine and at very low monovalent cation concentrations. Electric dichroism measurements on a complex of uncondensed chromatin with methylene blue were made to determine the contribution of the linker and of the nucleosomes to the total dichroism.A new approach to calculate the dichroism from realistic structural models, which also yields other structural parameters (radius of gyration, radius of gyration of the cross-section, mass per unit length) was used. Only a restricted range of structures is simultaneously compatible with all experimental results. Further, it is shown that previous interpretations of dichroism measurements on chromatin were in contradiction with X-ray scattering data and failed to take into account the distribution of orientation of the nucleosomes in the fibers. When this is done, it is found that the linker DNA in chicken erythrocyte and sea urchin chromatin must run nearly perpendicularly to the fibre axis. Taken together with the dependence of the fibre diameter on the linker length, these results provede the strongest evidence hitherto available for a model in which the linker crosses the central part of the fibre.  相似文献   

5.
J D McGhee  J M Nickol  G Felsenfeld  D C Rau 《Cell》1983,33(3):831-841
We have used electric dichroism to study the arrangement of nucleosomes in 30 nm chromatin solenoidal fibers prepared from a variety of sources (CHO cells, HeLa cells, rat liver, chicken erythrocytes, and sea urchin sperm) in which the nucleosome spacer length varies from approximately 10 to approximately 80 bp. Field-free relaxation times are consistent only with structures containing 6 +/- 1 nucleosomes for every 11 nm of solenoidal length. With very few assumptions about the arrangement of the spacer DNA, our dichroism data are consistent with the same orientation of the chromatosomes for every chromatin sample examined. This orientation, which maintains the faces of the radially arranged chromatosomes inclined at an angle between 20 degrees-33 degrees to the solenoid axis, thus appears to be a general structural feature of the higher order chromatin fiber.  相似文献   

6.
Higher-order structure of long repeat chromatin.   总被引:9,自引:3,他引:6       下载免费PDF全文
J Widom  J T Finch    J O Thomas 《The EMBO journal》1985,4(12):3189-3194
The higher-order structure of chromatin isolated from sea urchin sperm, which has a long nucleosomal DNA repeat length (approximately 240 bp), has been studied by electron microscopy and X-ray diffraction. Electron micrographs show that this chromatin forms 300 A filaments which are indistinguishable from those of chicken erythrocytes (approximately 212 bp repeat); X-ray diffraction patterns from partially oriented samples show that the edge-to-edge packing of nucleosomes in the direction of the 300 A filament axis, and the radial disposition of nucleosomes around it, are both similar to those of the chicken erythrocyte 300 A filament, which is described by the solenoid model. The invariance of the structure with increased linker DNA length is inconsistent with many other models proposed for the 300 A filament and, furthermore, means that the linker DNA must be bent. The low-angle X-ray scattering in the 300-400 A region both in vitro and in vivo differs from that of chicken erythrocyte chromatin. The nature of the difference suggests that 300 A filaments in sea urchin sperm in vivo are packed so tightly together that electron-density contrast between individual filaments is lost; this is consistent with electron micrographs of the chromatin in vitro.  相似文献   

7.
Fragments of chromatin containing 23 +/- 2.5 nucleosomes have been fractionated after light nuclease treatment of chicken erythrocyte nuclei. Low-angle scattering measures the total z-average radius of gyration of the already well-defined particles and the shape of scatter curves can be compared with three-dimensional analysis as opposed to cross-section analysis of long chromatin fragments. The data show that the particles are not spherical, have no detectable hole in the center of the structure and are best represented by a solid rod-like shape such as that generated by a coil of nucleosomes with the centre perhaps filled with linker DNA and histone H1/H5. 23 nucleosome fragments, where the DNA is partially fragmented, have near-identical scatter curves to the above-defined intact particles, indicating the primary importance of histone proteins in maintaining the integrity of the chromatin higher-order structure. Neutron scattering shows the radii of gyration to be contrast-independent, which fits in with the model calculations for solenoids. Particles with fragmented DNA and the intact particles, therefore, behave as sections of a solenoidal higher-order structure and possibly are observed as "superbeads' only during the folding and unfolding pathways of nucleosome multimers.  相似文献   

8.
Chromatin fibers were studied in solutions of mM monovalent salt by small angle neutron scattering. The variation of the cross section radius of gyration with H2O/D2O contrast shows that DNA is at much larger average radial distances from the fiber axis than histone. Consequently, the coils of DNA in a core particle must be approximately parallel to the fiber direction. The radii of gyration suggest that the maximum diameter of chromatin and nucleosomes is approximately 14 nm and that the DNA id distributed in two radial layers. The concentration dependence of the scattering maxima near 14 nm spacings furnishes independent support for a 14 nm external diameter and can be interpreted by a double DNA layer configuration.  相似文献   

9.
Small-angle X-ray scattering experiments were carried out on rat thymus chromatin in "native" and "H1-depleted" states at various NaCl concentrations using synchrotron radiation. From the analysis of cross-sectional Guinier plots, the radius of gyration of the cross section (Rc) and the mass per unit length (Mc) of native chromatin were evaluated. In the absence of NaCl, the cross section of chromatin filament has a radius of gyration of 3.44 nm, suggesting the structure corresponding to the "10 nm" filament. With increasing NaCl concentration, the Rc value increases steeply to 6.74 nm at 5 mM NaCl and then gradually to 8.82 nm at 50 mM NaCl, whereas the Mc value, which is determined relative to that of tobacco mosaic virus (TMV), increases steadily from 1.58 nucleosomes per 10 nm in the absence of NaCl to 7.66 nucleosomes per 10 nm at 50 mM NaCl. However, since calibration with TMV tends to overestimate the Mc value, the actual Mc values may be less than those values. Above about 40 mM NaCl, aggregation of chromatin is suggested. Similar analysis of H1-depleted chromatin confirmed that H1-depleted chromatin takes a more disordered structure than native chromatin at low ionic strength and does not undergo a definite structure change upon further addition of NaCl.  相似文献   

10.
11.
Higher-order structures of chromatin in solution.   总被引:4,自引:0,他引:4  
Neutron scatter studies have been made on gently prepared chicken erythrocyte chromatin over a range of ionic strength. At low ionic strength the mass per unit length of the '10 nm nucleofilament corresponds to one nucleosome per 8--12 nm and a DNA packing ratio of between 6 and 9. From the contrast dependence of the cross-section radius of gyration of the nucleofilament the following parameters have been obtained; RgDNA' the cross-section radius of gyration (Rg) when DNA dominates the scatter; RgP, the cross-section Rg when protein dominates the scatter; Rc, the cross-section Rg at infinite contrast and alpha, the constant which describes the dependence of the cross-section Rg on contrast variation. From our understanding of the structure of the core particle, various arrangement of core particles in the nucleofilament have been tested. In models consistent with the above parameters the core particles are arranged edge-to-edge or with the faces of the core particles inclined to within 20 degrees to the axis of the nucleofilament. With increase of ionic strength the transition to the second-order chromatin structure has been followed. This gave the interesting result that above 20 microM NaCL or 0.4 mM MgCL2 the cross-section Rg increases abruptly to about 9 nm with a packing ratio of 0.2 nucleosome/mn and with further increase of ionic strength the Rg increases to 9.5 nm while the packing ratio increases threefold to 0.6 nucleosome/nm. This suggests a family of supercoils of nucleosomes which contract with increasing ionic strength. In its most contracted form the diameter of the hydrated supercoil has been found from the radial distribution function to be 34 nm. Models for the arrangements of core particles in the 34-nm supercoil are discussed.  相似文献   

12.
Chromatin fibers have been observed and measured in frozen hydrated sections of three types of cell (chicken erythrocytes and sperm of Patiria miniata and Thyone briareus) representing an approximately 20- bp range of nucleosomal repeat lengths. For sperm of the starfish P. miniata, it was possible to obtain images of chromatin fibers from cells that were swimming in seawater up to the moment of cryo- immobilization, thus providing a record of the native morphology of the chromatin of these cells. Glutaraldehyde fixation produced no significant changes in the ultrastructure or diameter of chromatin fibers, and fiber diameters observed in cryosections were similar to those recorded after low temperature embedding in Lowicryl K11M. Chromatin fiber diameters measured from cryosections of the three types of nuclei were similar, a striking contrast to the situation for chromatin isolated from these cell types, where a strong positive correlation between diameter and nucleosomal repeat length has been established. The demonstration of chromatin fibers in unfixed whole cells establishes an unequivocal baseline for the study of native chromatin and chromosome architecture. The significant differences between chromatin fibers in nucleo and after isolation supports a previous observation (P. J. Giannasca, R. A. Horowitz, and C. L. Woodcock. 1993. J. Cell Sci. 105:551-561), and suggests that structural studies on isolated material should be interpreted with caution until the changes that accompany chromatin isolation are understood.  相似文献   

13.
14.
Intact chromatin, chromatin minus histone H1, and nuclease digestion fragments have been studied by very small angle neutron scattering. The results are not consistent with a straight chain of nucleosomes and require the presence of a higher order coiling in monovalent salt solutions. The data are interpretable by a structure having a cross section radius of gryration of 8.5 +/- 1 nm, which suggests an outer diameter for a coil of nucleosomes of 27 +/- 3 nm.  相似文献   

15.
A new Monte Carlo model for the structure of chromatin is presented here. Based on our previous work on superhelical DNA and polynucleosomes, it reintegrates aspects of the "solenoid" and the "zig-zag" models. The DNA is modeled as a flexible elastic polymer chain, consisting of segments connected by elastic bending, torsional, and stretching springs. The electrostatic interaction between the DNA segments is described by the Debye-Hückel approximation. Nucleosome core particles are represented by oblate ellipsoids; their interaction potential has been parameterized by a comparison with data from liquid crystals of nucleosome solutions. DNA and chromatosomes are linked either at the surface of the chromatosome or through a rigid nucleosome stem. Equilibrium ensembles of 100-nucleosome chains at physiological ionic strength were generated by a Metropolis-Monte Carlo algorithm. For a DNA linked at the nucleosome stem and a nucleosome repeat of 200 bp, the simulated fiber diameter of 32 nm and the mass density of 6.1 nucleosomes per 11 nm fiber length are in excellent agreement with experimental values from the literature. The experimental value of the inclination of DNA and nucleosomes to the fiber axis could also be reproduced. Whereas the linker DNA connects chromatosomes on opposite sides of the fiber, the overall packing of the nucleosomes leads to a helical aspect of the structure. The persistence length of the simulated fibers is 265 nm. For more random fibers where the tilt angles between two nucleosomes are chosen according to a Gaussian distribution along the fiber, the persistence length decreases to 30 nm with increasing width of the distribution, whereas the other observable parameters such as the mass density remain unchanged. Polynucleosomes with repeat lengths of 212 bp also form fibers with the expected experimental properties. Systems with larger repeat length form fibers, but the mass density is significantly lower than the measured value. The theoretical characteristics of a fiber with a repeat length of 192 bp where DNA and nucleosomes are connected at the core particle are in agreement with the experimental values. Systems without a stem and a repeat length of 217 bp do not form fibers.  相似文献   

16.
Reconstitution of the 30 nm filament of chromatin from pure histone H5 and chromatin depleted of H1 and H5 has been studied using small-angle neutron-scattering. We find that depleted, or stripped, chromatin is saturated by H5 at the same stoichiometry as that of linker histone in native chromatin. The structure and condensation behavior of fully reconstituted chromatin is indistinguishable from that of native chromatin. Both native and reconstituted chromatin condense continuously as a function of salt concentration, to reach a limiting structure that has a mass per unit length of 6.4 nucleosomes per 11 nm. Stripped chromatin at all ionic strengths appears to be a 10 nm filament, or a random coil of nucleosomes. In contrast, both native and reconstituted chromatin have a quite different structure, showing that H5 imposes a spatial correlation between neighboring nucleosomes even at low ionic strength. Our data also suggest that five to seven contiguous nucleosomes must have H5 bound in order to be able to form a higher-order structure.  相似文献   

17.
Models of chromatin fibers structures with linear regions of linker DNA were analysed. Limitations put by end dimensions of linker DNA and nucleosomes are considered. Good agreement between the structural properties of model and real chromatin fibers was obtained. It has been shown that the models with three and more configurations of closely located nucleosomes have linker DNA of 19-53 base pairs length, which is characteristic of real chromatin of the majority of somatic cells.  相似文献   

18.
The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.  相似文献   

19.
Hizume K  Yoshimura SH  Takeyasu K 《Biochemistry》2005,44(39):12978-12989
Higher-order architectures of chromosomes play important roles in the regulation of genome functions. To understand the molecular mechanism of genome packing, an in vitro chromatin reconstitution method and a single-molecule imaging technique (atomic force microscopy) were combined. In 50 mM NaCl, well-stretched beads-on-a-string chromatin fiber was observed. However, in 100 mM NaCl, salt-induced interaction between nucleosomes caused partial aggregation. Addition of histone H1 promoted a further folding of the fiber into thicker fibers 20-30 nm in width. Micrococcal nuclease digestion of these thicker fibers produced an approximately 170 bp fragment of nucleosomal DNA, which was approximately 20 bp longer than in the absence of histone H1 ( approximately 150 bp), indicating that H1 is correctly placed at the linker region. The width of the fiber depended on the ionic strength. Widths of 20 nm in 50 mM NaCl became 30 nm as the ionic strength was changed to 100 mM. On the basis of these results, a flexible model of chromatin fiber formation was proposed, where the mode of the fiber compaction changes depending both on salt environment and linker histone H1. The biological significance of this property of the chromatin architecture will be apparent in the closed segments ( approximately 100 kb) between SAR/MAR regions.  相似文献   

20.
We have used new methods for chromatin isolation, together with conventional methods for measuring the nucleosome repeat length, to determine the repeat length of Schizosaccharomyces pombe chromatin. We obtain a result of 156(+/- 2) bp. Equivalent results are obtained using a psoralen crosslinking method for measuring the repeat length in viable spheroplasts. That result, together with other control experiments, rules out many possible artifacts. The measured value of 156(+/- 2) bp is smaller than the length of DNA found in the chromatosome. Thus, the chromatosome cannot be the fundamental unit of chromatin structure in all eukaryotes. The crossed linker model of chromatin higher order structure is incompatible with a nucleosome repeat length of 156 bp, and thus cannot apply to all eukaryotes. The solenoid model of higher order structure is compatible with this repeat length only if the solenoid is right-handed. We note two other properties of this chromatin. (1) Early in digestion, the DNA length of mononucleosomes from S. pombe and Aspergillus nidulans exceeds the nucleosome repeat length. (2) Many methods for isolating chromatin from S. pombe yield an apparent nucleosome repeat length of less than or equal to 140 bp; this result is found to be an artifactual consequence of nucleosome sliding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号