首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a result of blood vessel injury, protein D-aspartyl/L-isoaspartyl carboxyl methyltransferase (PIMT), a normally intracellular enzyme, becomes trapped within the meshwork of the vascular extracellular matrix where it can methylate substrate proteins. In this investigation we examined the distribution of such altered aspartyl-containing substrate proteins in the vascular wall. Nearly 90% of all the altered aspartyl residues were inaccessible to intracellular PIMT. Proteins of the extracellular matrix were found to be the major repository of altered aspartyl-containing polypeptides in the blood vessel wall, accounting for 70% of the total amount. Proteolytic cleavage of extracellular matrix proteins with cyanogen bromide (CNBr) revealed that collagens account for most of the altered aspartyl-containing proteins of the ECM. As a consequence of blood vessel injury, both type I and type III collagen along with other proteins were found to become methylated by injury-released PIMT. It is estimated that 1 cm of vein contains on the order of 5×1014 altered aspartyl residues involving between 1% and 5% of the total extracellular protein.  相似文献   

2.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.  相似文献   

3.
为探讨胶原海绵对颌下腺 (submandibulargland ,SMG)导管细胞的细胞相容性 ,采用HE染色光镜观察及免疫组化观察SMG导管细胞接种于胶原海绵后 ,细胞的生长情况。光镜下可见接种后第 1d细胞数量较少 ,分散于胶原海绵支架中间 ,第 7d细胞数量明显增加 ,免疫组织化学染色抗IV型胶原抗体染色呈阳性 ,说明细胞与支架材料之间已经有细胞外基质产生。胶原海绵具有良好的细胞相容性 ,是一种理想的支架材料。与胶原海绵复合培养 ,颌下腺导管细胞仍可保持良好的增殖能力。  相似文献   

4.
A basic organizational principle of the primate visual system is that it maps the visual environment repeatedly and retinotopically onto cortex. Simple algebraic models can be used to describe the projection from visual space to cortical space not only for V1, but also for the complex of areas V1, V2 and V3. Typically a conformal (angle-preserving) projection ensuring local isotropy is regarded as ideal and primate visual cortex is often regarded as an approximation of this ideal. However, empirical data show systematic deviations from this ideal that are especially relevant in the foveal projection. The aims of this study were to map the nature of anisotropy predicted by existing models, to investigate the optimization targets faced by different types of retino-cortical maps, and finally to propose a novel map that better models empirical data than other candidates. The retino-cortical map can be optimized towards a space-conserving homogenous representation or a quasi-conformal mapping. The latter would require a significantly enlarged representation of specific parts of the cortical maps. In particular it would require significant enlargement of parafoveal V2 and V3 which is not supported by empirical data. Further, the recently published principal layout of the foveal singularity cannot be explained by existing models. We suggest a new model that accurately describes foveal data, minimizing cortical surface area in the periphery but suggesting that local isotropy dominates the most foveal part at the expense of additional cortical surface. The foveal confluence is an important example of the detailed trade-offs between the compromises required for the mapping of environmental space to a complex of neighboring cortical areas. Our models demonstrate that the organization follows clear morphogenetic principles that are essential for our understanding of foveal vision in daily life.  相似文献   

5.
Dynamic interactions between cells and the extracellular matrix are essential in the regulation of a number of cellular processes including migration, adhesion, proliferation and differentiation. A variety of factors have been identified which modulate these interactions including transforming growth factor+, platelet-derived growth factor and others. Insulin-like growth factors have been shown to regulate collagen production by heart fibroblasts; however, the effects of this growth factor on the interactions of heart fibroblasts with the extracellular matrix have not been examined. The present studies were carried out to determine the effects of IGF-I on the ability of fibroblasts to interact with the extracellular matrix and to begin to determine the mechanisms of this response. These experiments illustrate that IGF-I treatment results in increased migration, collagen reorganization and gel contraction by heart fibroblasts. IGF-I has been shown to activate both the mitogen-activated protein kinase and phophatidylinositol-3 kinase pathways in isolated cells. Experiments with pharmacological antagonists of these pathways indicate that the mitogen-activated protein kinase pathway is essential for IGF-I stimulated collagen gel contraction by fibroblasts. These studies illustrate that IGF-I modulates the ability of fibroblasts to interact with the collagen matrix and that activation of multiple signaling pathways by IGF-I may produce distinct downstream responses in these cells.  相似文献   

6.
Increasing evidence suggests that the cytoplasmic tail of membrane type 1 matrix metalloproteinase (MT1-MMP) is subject to phos pho ryl a tion and that this modification may influence its enzymatic activity at the cell surface. In this study, phos pho ryl a ted MT1-MMP is detected using a phospho-specific antibody recognizing a protein kinase C consensus sequence (phospho-TXR), and a MT1-MMP tail peptide is phos pho ryl a ted by exogenous protein kinase C. To characterize the potential role of cytoplasmic residue Thr567 in these processes, mutants that mimic a state of either constitutive (T567E) or defective phos pho ryl a tion (T567A) were expressed and analyzed for their functional effects on MT1-MMP activity and cellular behavior. Phospho-mimetic mutants of Thr567 exhibit enhanced matrix invasion as well as more extensive growth within a three-dimensional type I collagen matrix. Together, these findings suggest that MT1-MMP surface action is regulated by phos pho ryl a tion at cytoplasmic tail residue Thr567 and that this modification plays a critical role in processes that are linked to tumor progression.Largely composed of a mixture of collagens, laminins, and vitronectin, the extracellular matrix (ECM)2 serves as both a physical scaffold and a barrier against cell invasion. It has become increasingly evident that the structural condition of the ECM plays a unique role in regulating cell behavior. Proteolysis of integral components of the basement membrane disturbs the barrier provided by the ECM. Without physical restriction, cells invade the surrounding environment in an unregulated manner. The ability of matrix metalloproteinases (MMPs) to collectively degrade nearly all ECM constituents allows this class of enzymes to function in a diverse range of physiological processes (1, 2). Of the anchored MMPs, membrane type 1 matrix metalloproteinase (MT1-MMP) was the first to be discovered and has been most thoroughly characterized. Unlike soluble MMPs, MT1-MMP has a stretch of hydrophobic amino acids that traverse the cell membrane, followed by a short cytoplasmic tail composed of 20 amino acids (3). The advantage of cell surface localization is 2-fold. Surface restriction allows MT1-MMP to modify the immediate pericellular environment, overcoming physical constraints imposed by the ECM (2). Localization at the cell surface also places tethered MMPs in an optimal position to function at invadapodia, highly specialized areas of the cell membrane that form during focalized cell invasion (4). Although information regarding the role of the cytoplasmic tail is relatively limited (5, 6), this domain may function as a bridge to the intracellular machinery.MT1-MMP has an essential role in matrix remodeling during physiological processes (7, 8). Conversely, its enzymatic activity is key to acquiring a metastatic phenotype in a variety of tumor cells, including lung, colon, breast, and cervical carcinomas (2, 911). The ability to alter the physical structure of the pericellular environment, while triggering the activation and modification of several cell surface proteins, identifies a central role for MT1-MMP in influencing cellular behavior (12). In return, stringent cellular regulation of MT1-MMP enzymatic activity is necessary to prevent aberrant proteolysis.Increasing evidence suggests that the cytoplasmic tail of MT1-MMP may regulate its activity at the cell surface. It has been demonstrated that MT1-MMP is internalized from the cell surface and that this process requires the presence of the cytoplasmic domain (5, 6). Tail truncation restricts MT1-MMP to the cell surface, suggesting that this domain contains sequence(s) that either mediate internalization or are required for physical interaction with another protein that facilitates its internalization (5, 6). The mechanism regulating this process has yet to be determined. Interestingly, both invasion and migration are down-regulated in cells where MT1-MMP is restricted to the cell surface (5, 6). These data suggest a correlation between internalization and matrix turnover, where MT1-MMP activity is either abrogated or enhanced under appropriate stimuli.Reversible phosphorylation is widely recognized as a key post-translational modification that regulates protein function. The cytoplasmic domain of MT1-MMP has three potential phosphorylation sites: Thr567, Tyr573, and Ser577. Recent work by Nyalendo et al. (13) indicates that MT1-MMP is phosphorylated at tyrosine residue Tyr573, and that this modification influences cell migration. Several surface proteins are regulated by phosphorylation at multiple residues. In the MT1-MMP cytoplasmic tail, Thr567 has homology with the consensus sequence for both protein kinase C (TXR) and ERK1/2 (XTP) (14), suggesting the possibility that active MT1-MMP might also be regulated through phosphorylation of this cytoplasmic tail residue. In the present study, we report that MT1-MMP bears a threonine phosphorylation site in its cytoplasmic tail and that this modification plays an important role in regulating several aspects of carcinoma cell behavior, including invasion and three-dimensional growth.  相似文献   

7.
There is a growing body of work in the literature that demonstrates the significant differences between 2D versus 3D environments in cell morphologies, spatial organization, cell-ECM interactions, and cell signaling. The 3D environments are generally considered more realistic tissue models both because they offer cells a surrounding environment rather than just a planar surface with which to interact, and because they provide the potential for more diverse mechanical environments. Many studies have examined cellular-mediated contraction of 3D matrices; however, because the 3D environment is much more complex and the scale more difficult to study, little is known regarding how mechanical environment, cell and collagen architecture, and collagen remodeling are linked. In the current work, we examine the spatial arrangement of neonatal cardiac fibroblasts and the associated collagen organization in constrained and unconstrained collagen gels over a 24 h period. Collagen gels that are constrained by their physical attachment to a mold and similar gels, which have been detached (unconstrained) from the mold and subsequently contract, offer two simple mechanical models by which the mechanisms of tissue homeostasis and wound repair might be examined. Our observations suggest the presence of two mechanical regimes in the unconstrained gels: an outer ring where cells orient circumferentially and local collagen aligns with the elongated cells; and a central region where unaligned stellate/bipolar cells are radially surrounded by collagen, similar to that seen throughout constrained gels. The evolving organization of cell alignment and surrounding collagen organization suggests that cellular response may be due to the cellular perception of the apparent stiffness of local physical environment.  相似文献   

8.
9.
Pericardial tissue has been used to construct bioprostheses employed in the repair of different kinds of injuries, mostly cardiac. However, calcification and mechanical failure have been the main causes of the limited durability of cardiac bioprostheses constructed with bovine pericardium. In the course of this work, a study was conducted on porcine fibrous pericardium, its microscopic structure and biochemical nature. The general morphology and architecture of collagen were studied under conventional light and polarized light microscopy. The biochemical study of the pericardial matrix was conducted according to the following procedures: swelling test, hydroxyproline and collagen dosage, quantification of amino acids in soluble collagen, component extraction of the extracellular matrix of the right and left ventral regions of pericardium with different molarities of guanidine chloride, protein and glycosaminoglycan (GAG) dosage, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and total GAG analysis. Microscopic analysis showed collagen fibers arranged in multidirectionally oriented layers forming a closely knit web, with a larger number of fibers obliquely oriented, initiating at the lower central region toward the upper left lateral relative to the heart. No qualitative differences were found between proteins extracted from the right and left regions. Likewise, no differences were found between fresh and frozen material. Protein dosages from left frontal and right frontal pericardium regions showed no significant differences. The quantities of extracted GAGs were too small for detection by the method used. Enzymatic digestion and electrophoretic analysis showed that the GAG found is possibly dermatan sulfate. The proteoglycan showed a running standard very similar to the small proteoglycan decorin.  相似文献   

10.

Aims

Activation of cardiac fibroblasts into myofibroblasts constitutes a key step in cardiac remodeling after myocardial infarction (MI), due to interstitial fibrosis. Mesenchymal stem cells (MSCs) have been shown to improve post-MI remodeling an effect that is enhanced by hypoxia preconditioning (HPC). Leptin has been shown to promote cardiac fibrosis. The expression of leptin is significantly increased in MSCs after HPC but it is unknown whether leptin contributes to MSC therapy or the fibrosis process. The objective of this study was to determine whether leptin secreted from MSCs modulates cardiac fibrosis.

Methods

Cardiac fibroblast (CF) activation was induced by hypoxia (0.5% O2). The effects of MSCs on fibroblast activation were analyzed by co-culturing MSCs with CFs, and detecting the expression of α-SMA, SM22α, and collagen IαI in CFs by western blot, immunofluorescence and Sirius red staining. In vivo MSCs antifibrotic effects on left ventricular remodeling were investigated using an acute MI model involving permanent ligation of the left anterior descending coronary artery.

Results

Co-cultured MSCs decreased fibroblast activation and HPC enhanced the effects. Leptin deficit MSCs from Ob/Ob mice did not decrease fibroblast activation. Consistent with this, H-MSCs significantly inhibited cardiac fibrosis after MI and mediated decreased expression of TGF-β/Smad2 and MRTF-A in CFs. These effects were again absent in leptin-deficient MSCs.

Conclusion

Our data demonstrate that activation of cardiac fibroblast was inhibited by MSCs in a manner that was leptin-dependent. The mechanism may involve blocking TGF-β/Smad2 and MRTF-A signal pathways.  相似文献   

11.
Age affects mortality from diseases differently than it affects mortality from external causes, such as accidents. Exclusion of the latter leads to the “all-diseases” category. The age trajectories of mortality from all diseases are studied in the five most populated countries of the EU, and the shape of these 156 age trajectories is investigated in detail. The arithmetic mean of ages where mortality reaches a minimal value is 8.47 years with a 95% confidence interval of [8.08, 8.85] years. Two simple deterministic models fit the age trajectories on the two sides of the mortality minimum. The inverse relationship is valid in all cases prior to this mortality minimum and death rates exactly decreased to three thousandths of its original size during the first 3000 days. After the mortality minimum, the standard Gompertz model fits the data in 63 cases, and the Gompertz model extended by a small quadratic element fits the remaining 93 cases. This analysis indicates that the exponential increase begins before the age of 15 years and that it is overshadowed by non-biological causes. Therefore, the existence of a mechanism switching that would explain the exponential increase in mortality after the age of 35 years is unlikely.  相似文献   

12.
Highlights? JAGGED (JAG) is required for growth of initiating floral organs in Arabidopsis ? JAG decouples cell cycle from cell growth during organ emergence ? JAG promotes fast, anisotropic growth when floral organs emerge from the meristem ? JAG directly represses meristem identity genes  相似文献   

13.
The aim of this study was to assess the effect of different culture conditions on the survival and morphological phenotype of cultured acinar cells. Acinar fragments isolated from hamster pancreas were embedded in rat-tail collagen. Four groups were established: Medium 1—5% NuSerum + basic medium (basic MEDIUM = DMEM/F12 supplemented with dexamethasone, 3-isobutyl-2-methylxanthine, and antibiotics); Medium 2—10% NuSerum + basic medium. Medium 3—Medium 2 supplemented with epidermal growth factor and cholera toxin; and Medium 4:—Medium 3 supplemented with soybean trypsin inhibitor. Freshly isolated acinar cells were retrieved morphologically intact. In Medium 1, more than 80% of cells retained a normal histological appearance at 34 days in culture. Immunostaining for amylase was observed at the apical pole of the cells. The remaining cells showed variable degrees of degeneration. In Medium 2, approximately 50% of acinar cells appeared normal at 34 days in culture, while the remainder were severely degenerated. A few cystic structures were also observed. Positive immunostaining for amylase was limited to the cells with a normal histological appearance. The cells grown in Media 3 and 4 had similar courses of morphological changes. After 8 days in culture, most acinar fragments disappeared and were replaced by cystic structures, lined by a single layer of cuboidal cells. Some amylase-positive immunoreactive cells were integral components of the cystic wall. Cellular amylase activity was a function of the different culture media, a more rapid decrease in amylase activity being observed in Media 3 and 4. Uptake of [3H]thymidine did not show any significant differences between the media. It was also found that the ductlike cells cultured in Medium 4 had a limited capacity to redifferentiate into acinar cells. This study shows that the acinar cell phenotype can be maintainedin vitrofor more than 1 month. This study also suggests that ductal-like epithelial structures arise from transformation of acinar cells.  相似文献   

14.
The C-terminal end of collagen XV, restin, has been the focus of several studies, but the functions of full-length collagen XV have remained unknown. We describe here studies on the production, purification, and function of collagen XV and the production of a monoclonal N-terminal antibody to it. Full-length human collagen XV was produced in insect cells using baculoviruses and purified from the cell culture medium. The yield was 15 mg/liter of cell culture medium. The collagen XV was shown to be trimeric, with disulfide bonds in the collagenous region. Rotary shadowing electron microscopy revealed rod-like molecules with a mean length of 241.8 nm and with a globular domain at one end. The globular domain was verified to be the N-terminal end by N-terminal antibody binding. The molecules show flexibility in their conformation, presumably due to the many interruptions in their collagenous domains. The ability of collagen XV to serve as a substrate for cells was tested in cell adhesion assays, and it was shown that cells did not bind to collagen XV-coated surfaces. When added to the culture medium of fibroblasts and fibrosarcoma cells, however, collagen XV rapidly bound to their fibronectin network. Solid phase assays showed that collagen XV binds to fibronectin, laminin, and vitronectin and that it binds to the collagen/gelatin-binding domain of fibronectin. No binding was detected to fibrillar collagens, fibril-associated collagens, or decorin. Interestingly, collagen XV was found to inhibit the adhesion and migration of fibrosarcoma cells when present in fibronectin-containing matrices.  相似文献   

15.
Midbrain dopamine (mdDA) neurons project via the medial forebrain bundle towards several areas in the telencephalon, including the striatum1. Reciprocally, medium spiny neurons in the striatum that give rise to the striatonigral (direct) pathway innervate the substantia nigra2. The development of these axon tracts is dependent upon the combinatorial actions of a plethora of axon growth and guidance cues including molecules that are released by neurites or by (intermediate) target regions3,4. These soluble factors can be studied in vitro by culturing mdDA and/or striatal explants in a collagen matrix which provides a three-dimensional substrate for the axons mimicking the extracellular environment. In addition, the collagen matrix allows for the formation of relatively stable gradients of proteins released by other explants or cells placed in the vicinity (e.g. see references 5 and 6). Here we describe methods for the purification of rat tail collagen, microdissection of dopaminergic and striatal explants, their culture in collagen gels and subsequent immunohistochemical and quantitative analysis. First, the brains of E14.5 mouse embryos are isolated and dopaminergic and striatal explants are microdissected. These explants are then (co)cultured in collagen gels on coverslips for 48 to 72 hours in vitro. Subsequently, axonal projections are visualized using neuronal markers (e.g. tyrosine hydroxylase, DARPP32, or βIII tubulin) and axon growth and attractive or repulsive axon responses are quantified. This neuronal preparation is a useful tool for in vitro studies of the cellular and molecular mechanisms of mesostriatal and striatonigral axon growth and guidance during development. Using this assay, it is also possible to assess other (intermediate) targets for dopaminergic and striatal axons or to test specific molecular cues.  相似文献   

16.
17.
In the interstitial matrix, collagen unfolding at physiologic temperatures is thought to facilitate interactions with enzymes and scaffold molecules during inflammation, tissue remodeling, and wound healing. We tested the hypothesis that it also plays a role in modulating flows and matrix hydration potential. After progressively unfolding dermal collagen in situ, we measured the hydration parameters by osmotic stress techniques and modeled them as linear functions of unfolded collagen, quantified by differential scanning calorimetry after timed heat treatment. Consistent with the hypothetical model, the thermodynamic and flow parameters obtained experimentally were related linearly to the unfolded collagen fraction. The increases in relative humidity and intensity of T2 maps were also consistent with interfacial energy contributions to the hydration potential and the hydrophobic character of the newly formed protein/water interfaces. As a plausible explanation, we propose that increased tension at interfaces formed during collagen unfolding generate local gradients in the matrix that accelerate water transfer in the dermis. This mechanism adds a convective component to interstitial transfer of biological fluids that, unlike diffusion, can speed the dispersion of water and large solutes within the matrix.  相似文献   

18.
《生命科学研究》2019,(6):487-493
细胞作为有机体的最小组成单元,广泛参与着一系列的生命活动。细胞甚至单分子层面上的生物化学反应一直是探究机体生理活性的重点。近些年来,越来越多的研究指出,力学微环境广泛地影响着细胞的生物学活性,如细胞内蛋白质的分布和动态变化、信号转导等,同时细胞对外界产生的力学效应在组织的重构中起着重要的作用。理解力学微环境与细胞生物学效应的关系为研究生理病理条件下细胞的变化提供了新的视角,同时为开发支架等仿生材料提供了新的思路。本文总结了基质的硬度、配体浓度如何影响细胞黏附、迁移和分化,可为未来生物力学的研究提供基础和依据。  相似文献   

19.
20.
肝星状细胞(hepatic stellate cell,HSC)是肝纤维化发展过程中过量细胞外基质的主要来源。该研究首先利用MTT法检测IL-13实验剂量和时间条件下肝星状细胞增殖情况;然后运用RT-PCR技术检测IL-13对人肝星状细胞LX-2细胞系IL-13Rα1、IL-4Rα、TGF-β和Ⅰ型胶原蛋白转录水平的影响;最后通过羟脯氨酸法定量分析各组细胞培养上清液中的胶原蛋白含量。结果发现:IL-13能促进肝星状细胞的增殖;在不改变IL-13Rα1和IL-4Rα转录水平的同时,对TGF-β和Ⅰ型胶原蛋白mRNA的表达以及细胞总胶原蛋白含量的上调作用均呈现出较为明显的剂量和时间依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号