首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protozoan responsible for Chagas' disease, Trypanosoma cruzi , expresses on its surface an unusual trans -sialidase enzyme thought to play an important role in host–parasite interactions. Trans -sialidase is the product of a multigene family encoding both active and inactive proteins. We have demonstrated that despite lacking enzymatic activity due to a single mutation, Tyr342-His, inactive trans -sialidase displays sialic acid binding activity, with identical specificity to that of its active analogue. In this work we demonstrate that binding of a recombinant inactive trans -sialidase to molecules containing α2,3-linked sialic acid on endothelial cell surface triggers NF-κB activation, expression of adhesion molecules and upregulation of parasite entry into host cells. Furthermore, inactive recombinant trans -sialidase blocks endothelial cell apoptosis induced by growth factor deprivation. These results suggest that inactive members of the trans -sialidase family play a role in endothelial cell responses to T. cruzi infection.  相似文献   

2.
Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues. The latter ultimately code for catalytically inactive proteins with very high similarity to their active paralogs. These inactive members have been shown to be lectins, able to bind sialic acid and galactose in vitro, although their cellular functions are yet to be fully established. We now report structural and biochemical evidence extending the current molecular understanding of these lectins. We have solved the crystal structure of one such catalytically inactive trans-sialidase-like protein, after soaking with a specific carbohydrate ligand, sialyl-α2,3-lactose. Instead of the expected trisaccharide, the binding pocket was observed occupied by α-lactose, strongly suggesting that the protein retains residual hydrolytic activity. This hypothesis was validated by enzyme kinetics assays, in comparison to fully active wild-type trans-sialidase. Surface plasmon resonance also confirmed that these trans-sialidase-like lectins are not only able to bind small oligosaccharides, but also sialylated glycoproteins, which is relevant in the physiologic scenario of parasite infection. Inactive trans-sialidase proteins appear thus to be β-methyl-galactosyl-specific lectins, evolved within an exo-sialidase scaffold, thus explaining why their lectin activity is triggered by the presence of terminal sialic acid.  相似文献   

3.
Boraston AB  Ficko-Blean E  Healey M 《Biochemistry》2007,46(40):11352-11360
Myonecrotic isolates of Clostridium perfringens secrete multimodular sialidases, often termed "large sialidases", that contribute to the virulence of this bacterium. NanJ is the largest of the two secreted sialidases at 1173 amino acids and comprises 6 different modules which are, from the N-terminus, a family 32 carbohydrate binding module (CBM), a family 40 CBM, a family 33 glycoside hydrolase, a module of unknown function, a family 82 "X-module" of unknown function, and a module with amino acid similarity to fibronectin type III domains. The hydrolase activity of clostridial sialidases is quite well documented; however, the functions of their accessory domains are entirely uninvestigated. Here we describe the carbohydrate binding activity of the isolated family 32 CBM (CBM32) and the isolated family 40 CBM (CBM40). CBM32 is shown to bind galactose or N-acetylgalactosamine, while CBM40 is sialic acid specific, though both CBMs appear to bind with very low affinities. The crystal structure of CBM32 was determined at 2.25 A in complex with galactose. This revealed what appears to be a very simple galactose binding site. The crystal structure of CBM40 was determined at 2.20 A in complex with a sialic acid containing molecule that it fortuitously crystallized with, revealing the molecular details of the CBM40-sialic acid interaction. Overall, the results indicate that NanJ contains carbohydrate specific binding modules that likely function to target the enzyme to molecules or cells bearing mixed populations of glycans that terminate in either galactose/N-acetylgalactosamine or sialic acid.  相似文献   

4.
ABSTRACT

Sialidases catalyze the removal of terminal sialic acid from various complex carbohydrates. In the gastrointestinal tract, sialic acid is commonly found in the sugar chain of mucin, and many enteric commensals use mucin as a nutrient source. We previously identified two different sialidase genes in Bifidobacterium bifidum, and one was cloned and expressed as an extracellular protein designated as exo-α-sialidase SiaBb2. The other exo-α-sialidase gene (siabb1) from the same bifidobacterium encodes an extracellular protein (SiaBb1) consisting of 1795 amino acids with a molecular mass of 189 kDa. SiaBb1 possesses a catalytic domain that classifies this enzyme as a glycoside hydrolase family 33 member. SiaBb1 preferentially hydrolyzes α2,3-linked sialic acid over α2,6-linked sialic acid from sialoglycan, which is the same as SiaBb2. However, SiaBb1 has an SGNH hydrolase domain with sialate-O-acetylesterase activity and an N-terminal signal sequence and C-terminal transmembrane region. SiaBb1 is the first bifunctional sialidase identified with esterase activity.

Abbreviations: GalNAc: N-acetyl-D-galactosamine; Fuc: L-fucose; Gal: D-galactose  相似文献   

5.
The procyclic stage of Trypanosoma brucei in the insect vector expresses a surface-bound trans-sialidase (TbTS) that transfers sialic acid from glycoconjugates in the environment to glycosylphosphatidylinositol-anchored proteins on its surface membrane. RNA interference against TbTS abolished trans-sialidase activity in procyclic cells but did not diminish sialidase activity, suggesting the presence of a separate sialidase enzyme for hydrolyzing sialic acid. A search of the T. brucei genome sequence revealed seven other putative genes encoding proteins with varying similarity to TbTS. RNA interference directed against one of these proteins, TbSA C, greatly decreased the sialidase activity but had no effect on trans-sialidase activity. The deduced amino acid sequence of TbSA C shares only 40% identity with TbTS but conserves most of the relevant residues required for catalysis. However, the sialidase has a tryptophan substitution for a tyrosine at position 170 that is crucial in binding the terminal galactose that accepts the transferred sialic acid. When this same tryptophan substitution in the sialidase was placed into the recombinant trans-sialidase, the mutant enzyme lost almost all of its trans-sialidase activity and increased its sialidase activity, further confirming that the gene and protein identified correspond to the parasite sialidase. Thus, in contrast to all other trypanosomes analyzed to date that express either a trans-sialidase or a sialidase but not both, T. brucei expresses these two enzymatic activities in two separate proteins. These results suggest that African trypanosomes could regulate the amount of critical sialic acid residues on their surface by modulating differential expression of each of these enzymes.  相似文献   

6.
Trypomastigotes, the blood stage form of the human parasite Trypanosoma cruzi, contain an enzyme on their surface, trans-sialidase, which catalyses the transfer of sialic acid from host glycoconjugates to acceptors on its own cell surface. At least a subset of the sialic acid-bearing acceptor molecules are involved in parasite invasion of host cells, an essential step in the life cycle of the parasite. Another trypomastigote surface enzyme that affects host cell invasion is neuraminidase and recent evidence suggests that both trans-sialidase and neuraminidase activities may be expressed by the same proteins on the parasite surface. We describe here the isolation and expression of several members of a trans-sialidase--neuraminidase gene family from T.cruzi. One of the isolated genes does indeed encode a protein with both trans-sialidase and neuraminidase activities, while other members of the gene family encode closely related proteins that express neither enzymatic activity. Chimeric protein constructs combining different portions of active and inactive genes identified a region of the gene necessary for enzymatic activity. Sequence analysis of this portion of the gene revealed a limited number of amino acid differences between the predicted active and inactive gene products.  相似文献   

7.
Host/parasite interaction mediated by carbohydrate/lectin recognition results in the attachment to and invasion of host cells and immunoregulation, enabling parasite replication and establishment of infection. Trypanosoma cruzi, the protozoan responsible for Chagas disease, expresses on its surface a family of enzymatically active and inactive trans-sialidases. The parasite uses the active trans-sialidase for glycoprotein sialylation in an unusual trans-glycosylation reaction. Inactive trans-sialidase is a sialic acid-binding lectin that costimulates host T cells through leucosialin (CD43) engagement. The co-mitogenic effect of trans-sialidase can be selectively abrogated by N-acetyllactosamine, suggesting the presence of an additional carbohydrate binding domain for galactosides, in addition to that for sialic acid. Here we investigated the interaction of inactive trans-sialidase in the presence of beta-galactosides. By using NMR spectroscopy, we demonstrate that inactive trans-sialidase has a beta-galactoside recognition site formed following a conformational switch induced by sialoside binding. Thus prior positioning of a sialyl residue is required for the beta-galactoside interaction. When an appropriate sialic acid-containing molecule is available, both sialoside and beta-galactoside are simultaneously accommodated in the inactive trans-sialidase binding pocket. This is the first report of a lectin recognizing two distinct ligands by a sequential ordered mechanism. This uncommon binding behavior may play an important role in several biological aspects of T. cruzi/host cell interaction and could shed more light into the catalytic mechanism of the sialic acid transfer reaction of enzymatically active trans-sialidase.  相似文献   

8.
Lectins from peanuts (PNA) and soy beans (SBA) bind terminal residues of galactose (Gal) and N-acetyl-galactosamine (GalNAc) respectively. Galactose oxidase oxidizes the hydroxyl group at C-6 of terminal Gal and GalNAc blocking the binding of PNA and SBA. Binding of these lectins to sugar residues is also severely limited by the existence of terminal residues of sialic acid. In the present study, lectin cytochemistry in combination with enzymatic treatments and quantitative analysis has been applied at light and electron microscopical levels to develop a simple methodology allowing the in situ discrimination between penultimate and terminal Gal/GalNAc residues. The areas selected for the demonstration of the method included rat zona pellucida and acrosomes of rat spermatids, which contain abundant glycoproteins with terminal Gal/GalNAc residues. Zona pellucida was labelled by LFA, PNA and SBA. After galactose oxidase treatment, terminal Gal/GalNAc residues are oxidized, and reactivity to PNA/SBA is abolished. The sequential application of galactose oxidase, neuraminidase and PNA/ SBA has the following effects: (i) oxidation of terminal Gal/GalNAc residues; (ii) elimination of terminal sialic acid residues rendering accessible to the lectins preterminal Gal/GalNAc residues; and (iii) binding of the lectins to the sugar residues. Acrosomes were reactive to PNA and SBA. No LFA reactivity was detected, thus indicating the absence of terminal sialic acid residues. Therefore, no labelling was observed after both galactose oxidase--PNA/SBA and galactose oxidase--neuraminidase--PNA/SBA sequences. In conclusion, the combined application of galactose oxidase, neuraminidase and PNA/SBA cytochemistry is a useful technique for the demonstration of penultimate carbohydrate residues with affinity for these lectins. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
Trypanosoma cruzi causes a suppression of the immune system leading to persistence in host cells. The trans -sialidase expressed by T. cruzi is a major virulence factor and transfers sialic acid from host glycoconjugates to mucin-like molecules on the parasite. Here we demonstrate that these sialylated structures play a role in the immunosuppression. We used two T. cruzi strains, whose TS activity correlated with their pathogenicity. The Tulahuen strain, characterized by a high TS activity efficiently infected mice, whereas the Tehuantepec strain showing a reduced TS activity could not establish a patent parasitemia. In vitro analysis revealed that these two strains invaded phagocytic and non-phagocytic host cells at a comparable rate, but they exhibited different potentials to modulate dendritic cell function. In contrast to Tehuantepec, the Tulahuen strain suppressed the production of the proinflammatory cytokine IL-12 and subsequent T-cell activation. This inhibitory effect was absent upon desialylation of the parasite. Therefore, we analysed whether sialylated structures of T. cruzi interact with the inhibitory sialic acid-binding protein Siglec-E on DC. Indeed, Siglec-E interacted with the pathogenic Tulahuen strain, but showed a diminished binding to the Tehuantepec strain. Ligation of Siglec-E on DC using antibodies confirmed this inhibitory effect on DC function.  相似文献   

10.
The nicotinic acetylcholine receptor from Torpedo marmorata was treated with neuraminidase. Direct determination of sialic acid released gave about 1 mole sialic acid per mole receptor. Lectin binding studies of the sugars accessible on the receptor molecule were performed after sialic acid hydrolysis. They indicated that the terminal sialic acid is linked to a galactose residue.The present findings confirm the presence of one terminal sialic acid residue per receptor molecule.  相似文献   

11.
Bacteriophages specific for Escherichia coli K1 express a tailspike protein that degrades the polysialic acid coat of E. coli K1 that is essential for bacteriophage infection. This enzyme is specific for polysialic acid and is a member of a family of endo-sialidases. This family is unusual because all other previously reported sialidases outside of this family are exo- or trans-sialidases. The recently determined structure of an endo-sialidase derived from bacteriophage K1F (endoNF) revealed an active site that lacks a number of the residues that are conserved in other sialidases, implying a new, endo-sialidase-specific catalytic mechanism. Using synthetic trifluoromethylumbelliferyl oligosialoside substrates, kinetic parameters for hydrolysis at a single cleavage site were determined. Measurement of kcat/Km at a series of pH values revealed a dependence on a single protonated group of pKa 5. Mutation of a putative active site acidic residue, E581A, resulted in complete loss of sialidase activity. Direct 1H NMR analysis of the hydrolysis of trifluoromethylumbelliferyl sialotrioside revealed that endoNF is an inverting sialidase. All other wild type sialidases previously reported are retaining glycosidases, implying a new mechanism of sialidase action specific to this family of endo-sialidases.  相似文献   

12.
Homologous species specificity is demonstrated with bovine and human thyroglobulin in which the two terminal sugars of the B carbohydrate chain, sialic acid and galactose have been removed by enzymatic hydrolysis. The species specificity is demonstrated by measuring the ability of the deglycosylated thyroglobulin derivatives to inhibit thyrotropin-induced increases in cAMP in human, rat and bovine thyroid cells in culture. Thus human-human or bovine-bovine interactions have higher activity coefficients by at least an order of magnitude than their heterologous counterparts. The homologous interactions are confirmed in binding studies and shown to be associated with negligible degradation of the bound ligand over a 24 hour period.  相似文献   

13.
The interaction in vitro between rat peritoneal macrophages and homologous, sialidase-treated lymphocytes was investigated. Lymphocytes were isolated from blood, thymus, and spleen on a density gradient. Total sialic acids obtained by acid hydrolysis were 10 nmol/10(8) lymphocytes, composed of 29% N-acetyl-neuraminic acid and 71% N-glycoloylneuraminic acid. Sialidase treatment released maximally 33% of membrane sialic acids. Lymphocytes were bound to peritoneal macrophages to an extent which increased in parallel with the amount of sialic acids released, whereas binding of untreated lymphocytes was not significant. This interaction was inhibited by free galactose and substances containing terminal galactose residues. Asialoorosomucoid with its oligoantennary sugar chains proved to be a 10(5) times more potent inhibitor of the interaction than lactose. The addition of homologous serum had no influence on binding. Electron microscopy revealed that vital lymphocytes were tightly bound to macrophages and only damaged lymphocytes appeared to be phagocytozed. The experiments demonstrate that the interaction between rat peritoneal macrophages and sialidase-treated lymphocytes is mediated by a macrophage receptor specific for galactose. This sugar is demasked on the surface of lymphocytes after the removal of terminal sialic acids. The role of this mechanism in cell recognition, elimination and homing of lymphocytes is discussed.  相似文献   

14.
Human alpha-thrombin increases the permeability of bovine pulmonary artery endothelial cell (CCL-209) monolayers. To determine if this increase is via an enzymatic or receptor-mediated mechanism, enzymatically active forms of alpha-thrombin and enzymatically inactive forms with cell binding activity were incubated with the monolayers. Enzymatic forms included alpha-thrombin and two digestion products, zeta-thrombin (chymotryptic product with 89% clotting activity) and gamma-thrombin (tryptic product). Enzymatically inactive forms included D-Phe-Pro-Arg-chloromethylketone-(PPACK) alpha-thrombin and diisopropylphosphorofluoridate-(DIP) alpha-thrombin. Cell binding activity of alpha- and PPACK-alpha-thrombin was demonstrated to be similar to each other and comparable to that cited in the literature for DIP-alpha-thrombin. gamma-Thrombin, on the other hand, did not compete for binding of 125I-labeled alpha-thrombin. All enzymatic forms of alpha-thrombin increased endothelial permeability as assessed by the clearance of 125I-albumin across the monolayers. Coincubation of PPACK, an enzymatic site inhibitor, with alpha- or gamma-thrombin prevented the increase in permeability, further indicating that alpha-thrombin increased permeability by its enzymatic activity. Both enzymatically inactive forms of alpha-thrombin with high-affinity binding activity had no effect on permeability. To further examine whether cell binding activity of alpha-thrombin contributed to the increased permeability, a sulfated COOH-terminal fragment of hirudin (hirugen) that binds to the anion-binding site of alpha-thrombin but, unlike hirudin, does not interact with the catalytic site was coincubated with alpha-thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hu J  Fei J  Reutter W  Fan H 《Glycobiology》2011,21(3):329-339
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process.  相似文献   

16.
The trans -sialidase from Trypanosoma cruzi is a member of the sialidase superfamily that functions as a sialidase in the absence of a carbohydrate acceptor. We have used(1)H nuclear magnetic resonance (NMR) spectroscopy to investigate the stereospecificity of the hydrolysis of two substrates, namely, 4-methyl-umbelliferyl- N -acetylneur-aminic acid and alpha(2-3)-sialyllactose, catalyzed by a recombinant T.cruzi trans -sialidase. We demonstrate that, in aqueous solution, the thermodynamically less stable alpha-form of N -acetylneuraminic acid is the initial product of the hydrolysis; subsequent mutarotation leads eventually to an equilibrium mixture of the alpha and beta forms, in molar ratio 8:92. In a mixed water/methanol solution, the hydrolysis reaction produces also the alpha-methyl sialoside but not its beta-methyl counterpart. We also show that 4-methyl-umbelliferyl- N -acetylneuraminic acid is a significantly better substrate for the sialidase than alpha(2-3)-sialyllactose. Prolonged incubation of alpha(2-3)-sialyllactose with an excess of trans -sialidase produced a trace of 2-deoxy-2,3-didehydro- N -acetylneuraminic acid, as identified by NMR spectroscopy and by gas liquid chromatography/mass spectro-metry. In conclusion, this study shows that the stereo-selectivity of the sialidase activity of T.cruzi trans -sialidase is identical to that of bacterial, viral, and mammalian sialidases, suggesting a similar active-site architecture.  相似文献   

17.
Bovine skim milk galactosyltransferase (EC 2.4.1.22) retained its catalytic activity after partial enzymatic removal of sialic acid and galactose. Desialylated and degalactosylated galactosyltransferase was a galactosyl acceptor in the galactosyltransferase reaction. [14C]Galactose from UDP-[14C]galactose was incorporated into the carbohydrate-depleted galactosyltransferase by native galactosyltransferase. The results suggest that galactosyltransferase participates in the biosynthesis of its glycopeptides of the sialic acid-galactose-N-acetylglucosamine type.  相似文献   

18.
Abstract: Myelin-associated glycoprotein (MAG) and Schwann cell myelin protein (SMP) are highly glycosylated members of a newly defined family of cell adhesion molecules belonging to the immunoglobulin superfamily that recognize terminal sialic acid residues on N- and O-linked oligosaccharides. The importance of the N-linked oligosaccharides on MAG were determined by removal of the eight predicted carbohydrate addition sites by site-directed mutagenesis. The results suggest that all eight N-linked glycosylation sites are utilized in COS cells. N-linked glycosylation does not appear to be required for sialic acid-dependent MAG binding to erythrocytes. However, N-linked glycosylation of MAG does play a role in the proper folding of MAG. It was also shown that sialylation in the host cell expressing MAG and SMP could inhibit binding to erythrocytes. The degree to which SMP and MAG erythrocyte binding was affected by sialylation in the host cell was dependent on (a) the level at which MAG was expressed on the surface on the host cell and (b) the presence of MAG ligands on the host cell. The data suggest that cis -ligands on the host cell compete with trans -ligands on the target cell for the binding site(s) on MAG.  相似文献   

19.
Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, expresses on its surface an uncommon membrane-bound sialidase, known as trans-sialidase. trans-Sialidase is the product of a multigene family encoding both active and inactive proteins. We report here that an inactive mutant of trans-sialidase physically interacts with CD4(+) T cells. Using a combination of flow cytometry and immunoprecipitation techniques, we identified the sialomucin CD43 as a counterreceptor for trans-sialidase on CD4(+) T cells. Using biochemical, immunological, and spectroscopic approaches, we demonstrated that the inactive trans-sialidase is a sialic acid-binding protein displaying the same specificity required by active trans-sialidase. Taken together, these results suggest that inactive members of the trans-sialidase family can physically interact with sialic acid-containing molecules on host cells and could play a role in host cell/T. cruzi interaction.  相似文献   

20.
FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini remained unaffected even after increased oxidation. Staining with the subunit was also reduced significantly by adding galactose to the incubation medium. Binding of CTB to cell surfaces apparently requires intact sialic groups on most, but not all, cell surfaces. Oxidation of the sialic acid residues may influence the structure of the sialylated GM1 molecules on the cell surface in different ways. It is possible that both the sialic acid residue and the terminal galactose are oxidized. Alternatively, the sialic acid may be resistant to acid hydrolysis in gangliosides in which the sialic acid is attached to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human milk contains high levels of sialic acid glycoconjugates that may provide defense mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号