首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cigarette smoke contains free radicals both in the particulate matter (tar) and in vapor-phase smoke. Vapor-phase smoke decreases the activity of alpha-1-proteinase inhibitor (alpha 1PI) in vitro. The free radical content of the tar and vapor-phase smoke from a cigarette that heats rather than burns tobacco has been compared with data on a standard 1R4F cigarette. No radicals were detected in the tar from the new cigarette and radicals in its vapor-phase smoke are lower by more than 99% relative to the 1R4F standard cigarettes. The vapor-phase smoke from the new cigarette causes essentially no reduction of alpha 1PI activity in vitro. These findings support our previously published mechanisms for the production of radicals in tar and in vapor-phase smoke.  相似文献   

2.
The abilities of a number of compounds of biological interest to protect alpha-1-proteinase inhibitor (alPI) against the loss of elastase inhibitory capacity (EIC) resulting from exposure to gas-phase cigarette smoke have been tested. We have identified several species that protect AlPI. Amino acids prevent the loss of EIC in a manner that correlates with their pK alpha-values; only the unprotonated amine provides protection. Catalase partially prevents the loss of EIC, suggesting that hydrogen peroxide produced from the reduction of oxygen in cigarette smoke extracts is responsible for at least some of the smoke-induced inactivation. The best protection against smoke-induced loss of EIC was provided by two biologically important antioxidant species: glutathione and ascorbic acid. Both species provide almost complete protection to alPI under the experimental conditions used. The nature of species that protect AlPI against the inactivation caused by exposure to gas-phase smoke provides clues upon which speculations about the mechanism of this inactivation may be based. The identification of protective species could lead to the development of compounds that smokers could take (for example, vitamin C) that would protect their lung tissue against the oxidative damage caused by cigarette smoke.  相似文献   

3.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a rodent carcinogen that is metabolically derived from carbonyl reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). NNAL can be pyridine N-oxidized to form NNAL-N-oxide, or conjugated to form NNAL-glucuronide - non-genotoxic metabolites that can be excreted in urine. Alternatively, NNAL can be alpha-hydroxylated at the methyl and methylene carbons adjacent to the nitroso group to generate electrophiles that can react with biological macromolecules, such as DNA and proteins. Our laboratory has previously demonstrated that the mutagenicity of NNK was significantly inhibited by the aqueous extract of tobacco smoke, as well as pyridine alkaloids in cigarette smoke, such as nicotine, cotinine and nornicotine. Given the structural similarity between NNK and NNAL, and the metabolic activation of both by cytochromes P450, we hypothesized that there may be a similar inhibition of NNAL metabolism, and consequently, inhibition of the mutagenic activity of NNAL by tobacco smoke and its pyridine alkaloid constituents. In the present study, we evaluated the ability of two pyridine alkaloids (nicotine and cotinine) and aqueous cigarette smoke condensate extract (ACTE) to inhibit the mutagenicity of NNAL in Salmonella typhimurium strain TA1535 in the presence of a metabolic activation system (S9). Both pyridine alkaloids tested, as well as ACTE, inhibited the mutagenicity of NNAL in a concentration-dependent manner. The observed reductions in mutagenicity were not the result of cell killing due to cytotoxicity. These results demonstrate that tobacco smoke contains pyridine alkaloids, as well as other unidentified constituents that inhibit the mutagenicity of NNAL, a major metabolite of NNK.  相似文献   

4.
Aqueous extract of cigarette smoke (CS) contains some stable oxidants, which oxidize human plasma proteins, bovine serum albumin, amino acid homopolymers, and also cause extensive oxidative degradation of microsomal proteins. Similar observations are made when the aqueous extract of cigarette smoke is replaced by whole phase CS solution or whole phase cigarette smoke. CS-induced microsomal protein degradation is a two step process: (i) oxidation of proteins by the oxidants present in the CS and (ii) rapid proteolytic degradation of the oxidized proteins by proteases present in the microsomes. Using aqueous extract of CS equivalent to that produced from one-twentieth of a cigarette, the observed initial and postcigarette smoke treated values of different parameters of oxidative damage per milligram of microsomal proteins are respectively: 0.24 and 1.74 nmoles for carbonyl formation, 125.4 and 62.8 fluorescence units for tryptophan loss, 10.2 and 33.4 fluorescence units for bityrosine formation, and 58.3 and 12.2 nmoles for loss of protein thiols. When compared with sodium dodecyl sulphate polyacrylamide gel electrophoresis profiles of untreated microsomal proteins, the extent of microsomal protein degradation after treatment with whole phase CS solution or aqueous extract of CS is above 90%. Ascorbate (100 microM) almost completely prevents cigarette smoke-induced protein oxidation and thereby protects the microsomes from subsequent proteolytic degradation. Glutathione is partially effective, but other antioxidants including superoxide dismutase, catalase, vitamin E, probucol, beta-carotene, mannitol, thiourea, and histidine are ineffective. The gas phase cigarette smoke contains unstable reactive oxygen species such as superoxide (O2*-) and hydrogen peroxide (H2O2) that can cause substantial oxidation of pure protein like albumin but is unable to produce significant oxidative damage of microsomal proteins. Gas phase cigarette smoke-induced albumin oxidation is not only inhibited by ascorbate and glutathione but also by superoxide dismutase, catalase and mannitol. The stable oxidants in the cigarette smoke are not present in the tobacco and are apparently produced by the interaction of O2*-/H2O2/OH* of the gas phase with some components of the tar phase during/following the burning of tobacco.  相似文献   

5.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

6.
We have established, for the first time, a reliable method to quantitate hydrogen peroxide (H2O2) generated in aqueous extracts of cigarette smoke tar. The aqueous tar extract was passed through a short reverse-phase column and its H2O2 concentration determined by differential pulse polarography using an automatic reference subtraction system. The H2O2 concentration increased with aging, pH and temperature; the presence of superoxide dismutase lead to lower H2O2 concentrations. This method was applied to many kinds of research and commercial cigarettes. With a few exceptions, the amount of H2O2 formed after a fixed time from each cigarette smoke was proportional to its tar yield.  相似文献   

7.
The form and function of alpha 1 proteinase inhibitor in lung lavage fluid from healthy smoking and non smoking individuals has been accurately assessed using critically appraised techniques. The present study demonstrated that it is possible to accurately assess alpha 1 PI function in unconcentrated lavage fluid but that sample collection, storage and subsequent processing may all affect the results. Absolute levels of alpha 1 PI were elevated in subjects who smoke and a substantial quantity of inactive protein was found in both smokers and non smokers. The proportion of inactive alpha 1 PI was similar for both groups, which by inference implies that normal smoking subjects do not have decreased protection by this inhibitor at the bronchoalveolar level. Physicochemical analysis of the alpha 1 PI in these normal subjects showed that it was different from alpha 1 PI previously reported from patients with established disease and this may have important implications regarding the pathogenesis of their condition. Western immunoblotting of bronchoalveolar lavage fluid (BALF) showed that all of the alpha 1 PI was present in the native molecular mass form (54,000 Da). Pre-incubation of samples with methionine sulphoxide peptide reductase restored alpha 1 PI function only by approximately 10% suggesting the presence of little reversibly oxidised alpha 1 PI in either group. Anion exchange HPLC of BALF revealed the presence of two alpha 1 PI species, one of which co-eluted with native, oxidised or proteolyzed forms and the other which was more cationic and did not inhibit porcine pancreatic elastase. Finally, thirteen out of sixteen BALF samples inhibited more neutrophil elastase than could be accounted for by the amounts of functional alpha 1 PI present, suggesting that the presence of other inhibitors is a feature of normal lavage fluids.  相似文献   

8.
Cigarette smoke was found to be rather ineffective in inactivating alpha 1-proteinase inhibitor (alpha 1-PI) in aqueous solution, whereas a slow inactivation of alpha 1-PI by a dimethyl sulfoxide extract of whole cigarette smoke condensate was observed. However, this inactivation could only partially be prevented by antioxidants indicating that it is not, or at least not exclusively, due to oxidation. The bulk of inactive alpha 1-PI found in lung lavage fluids from smokers is thus probably generated through endogenous mechanisms and not through smoke components directly.  相似文献   

9.
Cigarette tar causes single-strand breaks in DNA   总被引:2,自引:0,他引:2  
The results of this study demonstrate, for the first time, that cigarette tar causes DNA damage. Incubation in vitro of phage PM2 DNA with aqueous extracts of cigarette tar results in the introduction of DNA single-strand breaks. The effects of protective enzymes and radical scavengers indicate the involvement of active oxygen species. Although the semiquinone components of tar reduce dioxygen forming superoxide radicals and hydrogen peroxide, our results suggest that hydroxyl radicals formed via metal catalyzed decomposition of hydrogen peroxide are ultimately responsible for the DNA lesions. Our results also suggest that the metals in tar are reduced by the semiquinone components of tar and by superoxide at comparable rates.  相似文献   

10.
The effect of glucose/Cu2+ incubation on (a) pure methionine oxidation, (b) the oxidation of active-site methionine in alpha 1-proteinase inhibitor (alpha 1PI) and (c) the resulting activity and structural changes of this inhibitor was investigated. While no methionine was oxidized during a 24 day, 37 degrees C incubation with 0.01 M EDTA and 100 mM glucose, 64.2% oxidation occurred in 6 days when 0.01 mM Cu2+ was added to the 100 mM glucose. The first-order rate constant for oxidation in 10 mM glucose, 0.01 mM Cu2+ was 0.0218 day-1. Oxidation was inhibited by catalase, but accelerated by ascorbate ion. The active-site methionyl residue of alpha 1PI was oxidized 71.3% after a 4 day incubation in 100 mM glucose, 0.01 mM Cu2+ (pH 7.45), 0.1 M phosphate buffer. The elastase and trypsin inhibiting activities were lowered to 3.1 and 1.5% of control samples during this incubation. The inclusion of 1 mM DETAPAC, a transition metal chelator, resulted in a 98 + % retention of activity. Intrinsic fluorescence (350 nm excitation, 415 nm emission) of alpha 1PI increased 576% over control for the sample incubated in 100 mM glucose, 0.01 mM Cu2+ and SDS-PAGE revealed protein fragment molecular weights of 44.4 and 39.8 kDa. These studies suggest that both methionine oxidation and free radical induced fragmentation contribute to loss of alpha 1PI activity during glucose/Cu2+ incubations.  相似文献   

11.
Quercetin (3,3',4',5,7-pentahydroxyflavone) is one of the most abundant flavonol-type flavonoids rich in diet and suggested to possess a beneficial role in blood circulation. This study was conducted to know the effect of quercetin aglycone and one of its possible metabolite, quercetin-3-O-beta-D-glucuronide on cigarette tar extract-induced impairment of erythrocyte deformability. Erythrocyte suspension containing quercetin aglycone, quercetin-3-O-beta-D-glucuronide or quercetin-3-O-beta-D-glucoside was forced to flow through microchannels with equivalent diameter of 7 &mgr;m and its transit time was measured as an index of erythrocyte deformability using microchannel array method. Both quercetin aglycone and quercetin-3-O-beta-D-glucuronide, but not quercetin-3-O-beta-D-glucoside, substantially increased erythrocyte deformability indicating that the former two compounds affect the physicochemical state of erythrocyte by interacting with its membranes. Aqueous cigarette tar extract caused marked decrease in erythrocyte deformability with concomitant increase of membranous lipid peroxidation. In that case, quercetin aglycone suppressed the impairment of erythrocyte deformability as well as membranous lipid peroxidation. The same effect was found in quercetin-3-O-beta-D-glucuronide, eventhough its effect was lower than that of quercetin aglycone. Thus, not only quercetin aglycone but also its conjugate metabolite protects erythrocyte membrane from the damage of smoking by scavenging reactive oxygen species generated from cigarette tar. Intake of quercetin-rich food may be helpful to protect membranous damage in erythrocytes from smoking.  相似文献   

12.
Cigarette smoke induces a multitude of bulky/aromatic DNA adducts in vivo as revealed by 32P-postlabeling assay. The formation of such adducts is thought to involve metabolic activation of aromatic chemicals especially polycyclic aromatic hydrocarbons (PAHs) present in tumor-initiating cigarette tar fractions, via cytochrome P450-associated monooxygenases. Because radicals are present in both the gas and particulate (tar) phase of cigarette smoke and in aqueous extracts of cigarette smoke condensate (CSC), we addressed the question as to whether cytochrome P450-independent, possibly free radical-mediated reactions may contribute, also, to formation of cigarette smoke-associated bulky DNA adducts. Rat-lung DNA was incubated with aqueous extracts of CSC in the absence of microsomes under various conditions and analyzed by 32P-postlabeling. Radioactively labeled bulky reaction products were found to accumulate in a time- and CSC concentration-dependent manner. The resulting chromatographic profiles resembled cigarette smoke-associated DNA-adduct patterns observed in vivo. Pretreatment of aqueous CSC extract with radical scavengers/reducing agents (ascorbic acid, glutathione) diminished adduct formation in a concentration-dependent manner. Adduct formation in vitro may involve oxygen-free radicals, which are known to be present in aqueous CSC extracts and could (i) attack DNA directly to produce bulky adducts, (ii) induce radical sites on DNA covalently binding CSC components, or (iii) convert CSC components to DNA-reactive electrophiles. In addition, DNA may react with direct-acting mutagens in CSC. Adduct fractions derived from in vitro and in vivo experiments showed similar chromatographic behavior, suggesting that metabolic activation as well as processes not involving metabolism lead to formation of smoking-induced bulky DNA adducts in vivo.  相似文献   

13.
Tobacco smoking is the most important extrinsic cause, after the diet, for increasing morbidity and mortality in humans. Unless current tobacco smoking patterns in industrialised and non-industrialised countries change, cigarettes will kill prematurely 10 million people a year by 2025. Greece is at the top of the list of European countries in cigarette consumption. In 1997, a Greek tobacco company introduced a new 'bio-filter' (BF) claiming that it reduces substantially the risks of smoking. In a recent publication [Deliconstantinos G, Villiotou V, Stavrides J. Scavenging effects of hemoglobin and related heme containing compounds on nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke. A new method for protection against the dangerous cigarette constituents. Anticancer Res 1994; 14: 2717-2726] it was claimed that the new 'bio-filter' (activated carbon impregnated with dry hemoglobin) reduces certain toxic substances and oxidants (like NO, CO, NOx, H2O2, aldehydes, trace elements and nitroso-compounds) in the gas-phase of the mainstream smoke. We have investigated by electron paramagnetic resonance (EPR) the mainstream and sidestream smoke of the BF cigarette, in comparison with three other cigarettes with similar tar and nicotine contents, that have conventional acetate filters. We found that BF cigarette smoke has similar tar radical species with the same intensity EPR signals to those of the other cigarettes. The ability of the aqueous cigarette tar extracts to produce hydroxyl radicals (HO*), which were spin trapped by DMPO, was very similar to, or even higher than, the other 3 brands. The gas-phase of the mainstream smoke of the BF cigarette showed a 30-35% reduction in the production of oxygen-centered radicals (spin trapped with PBN). In the case of the sidestream smoke, BF cigarettes produced substantially higher concentrations of gas-phase radicals, compared to the other brands. These results suggest that BF is partially effective at removing some of the gas-phase oxidants but not effective in the reduction of tar and its radical species in the mainstream and sidestream smoke. It is well known from epidemiological studies that tar content is strongly associated with increasing risk to smokers of lung cancer. In our experiments, BF cigarettes produce a higher amount of tar and stable free radical species than the other 3 brands in the sidestream smoke (between puffs), thus potentially increasing risk to the smoker and passive smoker.  相似文献   

14.
Hydrogen peroxide is a component of cigarette smoke known to be essential for inactivation of alpha(1)-antitrypsin, the primary inhibitor of neutrophil elastase. To establish the molecular basis of the inactivation of alpha(1)-antitrypsin, we determined the sites oxidized by hydrogen peroxide. Two of the nine methionines were particularly susceptible to oxidation. One was methionine 358, whose oxidation was known to cause loss of anti-elastase activity. The other, methionine 351, was as susceptible to oxidation as methionine 358. Its oxidation also resulted in loss of anti-elastase activity, an effect not previously recognized. The equal susceptibility of methionine 358 and methionine 351 to oxidation was confirmed by mass spectrometry. To verify this finding, we produced recombinant alpha(1)-antitrypsins in which one or both of the susceptible methionines were mutated to valine. M351V and M358V were not as rapidly inactivated as wild-type alpha1-antitrypsin, but only the double mutant M351V/M358V was markedly resistant to oxidative inactivation. We suggest that inactivation of alpha(1)-antitrypsin by oxidation of either methionine 351 or 358 provides a mechanism for regulation of its activity at sites of inflammation.  相似文献   

15.
The Chaga mushroom (Inonotus obliquus) is claimed to have beneficial properties for human health, such as anti-bacterial, anti-allergic, anti-inflammatory and antioxidant activities. The antioxidant effects of the mushroom may be partly explained by protection of cell components against free radicals. We evaluated the effect of aqueous Chaga mushroom extracts for their potential for protecting against oxidative damage to DNA in human lymphocytes. Cells were pretreated with various concentrations (10, 50, 100 and 500 microg/mL) of the extract for 1 h at 37 degrees C. Cells were then treated with 100 microM of H2O2 for 5 min as an oxidative stress. Evaluation of oxidative damage was performed using single-cell gel electrophoresis for DNA fragmentation (Comet assay). Using image analysis, the degree of DNA damage was evaluated as the DNA tail moment. Cells pretreated with Chaga extract showed over 40% reduction in DNA fragmentation compared with the positive control (100 micromol H2O2 treatment). Thus, Chaga mushroom treatment affords cellular protection against endogenous DNA damage produced by H2O2.  相似文献   

16.
Whether genetic factors other than the protease-inhibitor (PI) polymorphism itself contribute to variation in alpha-1-antitrypsin is of both theoretical and practical interest. We have measured the quantity of alpha-1-antitrypsin (by an immunoturbidometric assay) and its activity (by assaying elastase inhibitory capacity [EIC]) in 583 individuals from 114 twin kinships who were also typed for PI by isoelectric focusing. Models of variation were fitted directly to the raw observations by a maximum-likelihood method. Specification of phenotypic means led to highly significant improvements in fit over models including only individual environment variance and additive genetic variance. The 29 phenotype means could also be described as the appropriate additive combinations of the 12 allelic effects. Only small improvements in fit could then be obtained by addition of polygenic components of variance. We conclude that nearly all genetic variation in alpha-1-antitrypsin quantity and activity can be explained by detectable variation at the PI locus and that this variance is largely additive. Bivariate analysis of alpha-1-antitrypsin and EIC revealed marginal evidence for differences in specific activities of molecules coded by different PI alleles. The correlation between environmental deviations for the two measures was only .63, which may reflect, in part, the rather low reliability of the assays and account for the modest heritabilities (less than .5) of the two measures. An intriguing finding was the presence of significant differences in E1 variance for different PI types, suggesting that different phenotypes have differing capacities to react to environmental challenges.  相似文献   

17.
Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml.  相似文献   

18.
A mixture of nitric oxide (NO) and isoprene in air has been studied as a model for gas-phase cigarette smoke. We have shown that this model system duplicates many of the properties of cigarette smoke including the inactivation of human alpha-1-proteinase inhibitor (a1PI). In this study, buffered solutions of a1PI were exposed to puffs of air containing 300 ppm NO and 400 ppm isoprene. Bubbling of the NO/air/isoprene gas stream directly through buffered protein solutions causes a1PI to undergo a fast loss of inhibitory capacity. This fast inactivation is not observed when a1PI is exposed to aqueous extracts of the NO/air/isoprene mixture. Both direct exposure and exposure to aqueous extracts, however, cause a1PI to undergo a slow loss of activity that continues for several days as the protein is incubated in the buffer solutions. Gas-phase cigarette smoke has already been shown to cause this same two-phase inactivation of a1PI. The inactivation of a1PI by the model system is dependent on the presence of oxygen in the gas stream, suggesting that the oxidation of nitric oxide to nitrogen dioxide in air is involved in the formation of the inactivating species. The nature of these species remains to be determined; however, small alkoxyl or peroxyl radicals (such as are spin-trappable from gas-phase smoke as well as from the NO/air/isoprene system) do not appear to inactivate a1PI. One possibility is that the inactivating species are metastable compounds formed by radical processes in the gas phase of both cigarette smoke and our model system. Our data suggest that one possible class of species is peroxynitrates.  相似文献   

19.
Treatment of amino acids, peptides, and proteins with aqueous solution of dimethyl sulfoxide (Me2SO) and hydrochloric acid (HCl) resulted in the oxidation of methionine to methionine sulfoxide. In addition to methionine, SH groups are also oxidized, but this reaction proceeds after a lag period of 2 h. Other amino acids are not modified by aqueous Me2SO/HCl. The reaction is strongly pH-dependent. Optimal conditions are 1.0 M HCl, 0.1 M Me2SO, at 22 degrees C. The reaction exhibits pseudo-first order kinetics with Kobs = 0.23 +/- 0.015 M-1 min-1 at 22 degrees C. Incubation of methionine sulfoxide with dimethyl sulfide and HCl resulted in the conversion of methionine sulfoxide to methionine. This reaction is fast (t1/2 = 4 min at room temperature) and quantitative at relatively anhydrous condition (i.e. at H2O:concentrated HCl:dimethyl sulfide ratio of 2:20:1). Quantitative conversions of methionine sulfoxide back to methionine are obtained in peptides and proteins as well, with no observable other side reactions in amino acids and proteins. The wide applications of this selective oxidation and reduction of methionine residues are demonstrated and discussed.  相似文献   

20.
Cigarette smoking causes apoptotic death, senescence, and impairment of repair functions in lung fibroblasts, which maintain the integrity of alveolar structure by producing extracellular matrix (ECM) proteins. Therefore, recovery of lung fibroblasts from cigarette smoke-induced damage may be crucial in regeneration of emphysematous lung resulting from degradation of ECM proteins and subsequent loss of alveolar cells. Recently, we reported that bone marrow-derived mesenchymal stem cell-conditioned media (MSC-CM) led to angiogenesis and regeneration of lung damaged by cigarette smoke. In this study, to further investigate reparative mechanisms for MSC-CM-mediated lung repair, we attempted to determine whether MSC-CM can recover lung fibroblasts from cigarette smoke-induced damage. In lung fibroblasts exposed to cigarette smoke extract (CSE), MSC-CM, not only inhibited apoptotic death, but also induced cell proliferation and reversed CSE-induced changes in the levels of caspase-3, p53, p21, p27, Akt, and p-Akt. MSC-CM also restored expression of ECM proteins and collagen gel contraction while suppressing CSE-induced expression of cyclooxygenase-2 and microsomal PGE(2) synthase-2. The CSE-opposing effects of MSC-CM on cell fate, expression of ECM proteins, and collagen gel contraction were partially inhibited by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. In rats, MSC-CM administration also resulted in elevation of p-Akt and restored proliferation of lung fibroblasts, which was suppressed by exposure to cigarette smoke. Taken together, these data suggest that MSC-CM may recover lung fibroblasts from cigarette smoke-induced damage, possibly through inhibition of apoptosis, induction of proliferation, and restoration of lung fibroblast repair function, which are mediated in part by the PI3K/Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号