首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the effect of intermittent hypobaric hypoxia combined with sea level training on exercise economy, 23 well-trained athletes (13 swimmers, 10 runners) were assigned to either hypobaric hypoxia (simulated altitude of 4,000-5,500 m) or normobaric normoxia (0-500 m) in a randomized, double-blind design. Both groups rested in a hypobaric chamber 3 h/day, 5 days/wk for 4 wk. Submaximal economy was measured twice before (Pre) and after (Post) the treatment period using sport-specific protocols. Economy was estimated both from the relationship between oxygen uptake (V(.-)o2) and speed, and from the absolute V(.-)o2 at each speed using sport-specific protocols. V(.-)o2 was measured during the last 60 s of each (3-4 min) stage using Douglas bags. Ventilation (V(.-)E), heart rate (HR), and capillary lactate concentration ([La(-)]) were measured during each stage. Velocity at maximal V(.-)o2 (velocity at V(.-)o2max) was used as a functional indicator of changes in economy. The average V(.-)o2 for a given speed of the Pre values was used for Post test comparison using a two-way, repeated-measures ANOVA. Typical error of measurement of V(.-)o2 was 4.7% (95% confidence limits 3.6-7.1), 3.6% (2.8-5.4), and 4.2% (3.2-6.9) for speeds 1, 2, and 3, respectively. There was no change in economy within or between groups (ANOVA interaction P = 0.28, P = 0.23, and P = 0.93 for speeds 1, 2, and 3). No differences in submaximal HR, [La-], Ve, or velocity at V(.-)o2(max) were found between groups. It is concluded that 4 wk of intermittent hypobaric hypoxia did not improve submaximal economy in this group of well-trained athletes.  相似文献   

2.
We used the following multiple-choice question after a series of lectures in cardiovascular physiology in the first year of an undergraduate medical curriculum (n = 66) to assess whether students had understood the neural regulation of cardiovascular function. In health, neural cardiovascular mechanisms are geared toward maintaining A) cardiac output, B) total peripheral resistance (TPR), C) arterial blood pressure (BP), D) tissue blood flow. The same question was administered to 275 graduates preparing for postgraduate exams (but not following the same series of lectures as the undergraduates). In both groups, we found a large proportion of incorrect answers (70% in undergraduates and 85% in graduates) and sorted this out by offering a step-by-step explanation and two examples and found it successful: 1) What happens to BP and heart rate (HR) when a person loses 500 ml of blood ( approximately 10% of blood volume) in one minute? 2) What happens to your BP and HR as you get out of bed after a night's sleep? Flow = perfusion pressure/resistance to flow; cardiac output = BP/TPR; BP = cardiac output x TPR = [stroke volume (SV) x HR] x TPR. In both examples, BP decreases and is rapidly brought into the normal range by the arterial baroreflex mechanism. TBF is regulated chiefly by varying local vascular resistance (autoregulation). In summary, the ultimate goal of all neural cardiovascular reflex mechanisms is to maintain arterial BP within a range in which tissues can regulate their own blood flows. Cardiovascular control during exercise was used as an example to emphasize these facts. A discussion of this kind triggered interest in the minds of students and graduates, helping them get rid of a major misconception in about 20-40 minutes.  相似文献   

3.
The purpose of this study was to investigate whether nocturnal hypoxia causes daytime blood pressure (BP) elevation. We hypothesized that overnight exposure to hypoxia leads the next morning to elevation in BP that outlasts the hypoxia stimulus. We studied the effect on BP of two consecutive night exposures to hypobaric hypoxia in 10 healthy normotensive subjects. During the hypoxia nights, subjects slept for 8 h in a hypobaric chamber at a simulated altitude of 4,000 m (barometric pressure = 462 mmHg). Arterial O(2) saturation and electrocardiogram were monitored throughout the night. For 30 min before the nocturnal simulated ascent and for 4 h after return to baseline altitude the next morning, BP was measured every 5 min while the subject was awake. The same measurements were made before and after 2 normoxic nights of sleep in the hypobaric chamber at ambient barometric pressure (745 mmHg). Principal components analysis was applied to evaluate patterns of BP response after the second night of hypoxia and normoxia. A distinct pattern of diastolic BP (DBP) elevation was observed after the hypoxia night in 9 of the 10 subjects but in none after the normoxia night. This pattern showed a mean increase of 4 mmHg in DBP compared with the presleep-awake baseline in the first 60 min and a return to baseline by 90 min. We conclude that nocturnal hypoxia leads to a carryover elevation of daytime DBP.  相似文献   

4.
Oxytocin (OT) has been implicated in the cardiovascular responses to exercise, stress, and baroreflex adjustments. Studies were conducted to determine the effect of genetic manipulation of the OT gene on blood pressure (BP), heart rate (HR), and autonomic/baroreflex function. OT knockout (OTKO -/-) and control +/+ mice were prepared with chronic arterial catheters. OTKO -/- mice exhibited a mild hypotension (102 +/- 3 vs. 110 +/- 3 mmHg). Sympathetic and vagal tone were tested using beta(1)-adrenergic and cholinergic blockade (atenolol and atropine). Magnitude of sympathetic and vagal tone to the heart and periphery was not significantly different between groups. However, there was an upward shift of sympathetic tone to higher HR values in OTKO -/- mice. This displacement combined with unchanged basal HR led to larger responses to cholinergic blockade (+77 +/- 25 vs. +5 +/- 15 beats/min, OTKO -/- vs. control +/+ group). There was also an increase in baroreflex gain (-13.1 +/- 2.5 vs. -4.1 +/- 1.2 beats x min(-1) x mmHg(-1), OTKO -/- vs. control +/+ group) over a smaller BP range. Results show that OTKO -/- mice are characterized by 1) hypotension, suggesting that OT is involved in tonic BP maintenance; 2) enhanced baroreflex gain over a small BP range, suggesting that OT extends the functional range of arterial baroreceptor reflex; and 3) shift in autonomic balance, indicating that OT reduces the sympathetic reserve.  相似文献   

5.
The efficiency of baroreflex control depends on the baroreflex sensitivity (BRS), which is defined as the ratio of the change in the heart rate (HR) to the change in the blood pressure (BP). The BRS value may be used for assessing the autonomic control of the cardiovascular system and the degree of autonomic dysfunction. Until recently, the baroreflex had not been assessed in a large population of healthy subjects. In this study, the BRS was estimated by the ratio of the low-frequency component of the HR spectrum and the low-frequency component of the rhythm of the systolic BP. For assessing the arterial baroreflex in children, the BRSs for spontaneous and induced baroreflexes were compared. Sex-and age-related differences in BRS were found in 8-to-11-year-old children, and correlations between BRS and some spectral components of HR variability (HRV) and BP rhythm variability were determined. Cluster analysis of the BRS calculated for the spontaneous baroreflex at rest was used to distinguish three clusters of subjects (with high, medium, and low BRSs). These clusters differed in the variability of the basic parameter and size and showed sex-related differences.  相似文献   

6.
We investigated the interplay of neural and hemodynamic mechanisms in postexercise hypotension (PEH) in hypertension. In 15 middle-aged patients with mild essential hypertension, we evaluated blood pressure (BP), cardiac output (CO), total peripheral resistance (TPR), forearm (FVR) and calf vascular resistance (CVR), and autonomic function [by spectral analysis of R-R interval and BP variabilities and spontaneous baroreflex sensitivity (BRS)] before and after maximal exercise. Systolic and diastolic BP, TPR, and CVR were significantly reduced from baseline 60-90 min after exercise. CO, FVR, and HR were unchanged. The low-frequency (LF) component of BP variability increased significantly after exercise, whereas the LF component of R-R interval variability was unchanged. The overall change in BRS was not significant after exercise vs. baseline, although a significant, albeit small, BRS increase occurred in response to hypotensive stimuli. These findings indicate that in hypertensive patients, PEH is mediated mainly by a peripheral vasodilation, which may involve metabolic factors linked to postexercise hyperemia in the active limbs. The vasodilator effect appears to override a concomitant, reflex sympathetic activation selectively directed to the vasculature, possibly aimed to counter excessive BP decreases. The cardiac component of arterial baroreflex is reset during PEH, although the baroreflex mechanisms controlling heart period appear to retain the potential for greater opposition to hypotensive stimuli.  相似文献   

7.
Occupational or recreational exercise reduces mortality from cardiovascular disease. The potential mechanisms for this reduction may include changes in blood pressure (BP) and autonomic control of the circulation. Therefore, we conducted the present long-term longitudinal study to quantify the dose-response relationship between the volume and intensity of exercise training, and regulation of heart rate (HR) and BP. We measured steady-state hemodynamics and analyzed dynamic cardiovascular regulation by spectral and transfer function analysis of cardiovascular variability in 11 initially sedentary subjects during 1 yr of progressive endurance training sufficient to allow them to complete a marathon. From this, we found that 1) moderate exercise training for 3 mo decreased BP, HR, and total peripheral resistance, and increased cardiovascular variability and arterial baroreflex sensitivity; 2) more prolonged and intense training did not augment these changes further; and 3) most of these changes returned to control values at 12 mo despite markedly increased training duration and intensity equivalent to that routinely observed in competitive athletes. In conclusion, increases in R-wave-R-wave interval and cardiovascular variability indexes are consistent with an augmentation of vagal modulation of HR after exercise training. It appears that moderate doses of training for 3 mo are sufficient to achieve this response as well as a modest hypotensive effect from decreasing vascular resistance. However, more prolonged and intense training does not necessarily lead to greater enhancement of circulatory control and, therefore, may not provide an added protective benefit via autonomic mechanisms against death by cardiovascular disease.  相似文献   

8.
F Cui  L Gao  F Yuan  ZF Dong  ZN Zhou  DD Kline  Y Zhang  DP Li 《PloS one》2012,7(7):e41656

Background

Hypobaric intermittent hypoxia (HIH) produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia.

Methodology/Principal Findings

Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K+ channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats.

Conclusions/Significance

Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K+ channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.  相似文献   

9.
Long-term exposure to intermittent hypoxia (IH), such as that occurring in association with sleep apnea, may result in systemic hypertension; however, the time course changes in arterial pressure, autonomic functions, and baroreflex sensitivity are still unclear. We investigated the changes in cardiovascular neural regulations during the development of chronic IH-induced hypertension in rats. Sprague-Dawley rats were exposed to repetitive 1.25-min cycles (30 s of N2+45 s of 21% O2) of IH or room air (RA) for 6 h/day during light phase (10 AM-4 PM) for 30 days. Arterial pressure was measured daily using the telemetry system during RA breathing. The mean arterial pressure (MAP) and interpulse interval (PPI) signals were then used to assess the autonomic functions and spontaneous baroreflex sensitivity by auto- and cross-spectral analysis, respectively. Stable MAP, low-frequency power of MAP (BLF), and low-frequency power (LF)-to-high frequency power (HF) ratio of PPI (LF/HF) were significantly higher in IH-exposed rats, compared with those of RA-exposed rats. Elevation of the MAP, BLF, LF/HF, and minute ventilation started 5 days after IH exposure and lasted until the end of the 30-day observation period. Additionally, IH-exposed rats had significant lower slope of MAP-PPI linear regression (under a successively descending and ascending) and magnitude of MAP-PPI transfer function (at frequency ranges of 0.06-0.6 Hz or 0.6-2.4 Hz) after IH exposure for 17 days. However, RA-exposed rats did not exhibit these changes. The results of this study indicate that chronic IH-induced hypertension is associated with a facilitation of cardiovascular sympathetic outflow and inhibition of baroreflex sensitivity in conscious rats.  相似文献   

10.
We investigated autonomic control of cardiovascular function in able-bodied (AB), paraplegic (PARA), and tetraplegic (TETRA) subjects in response to head-up tilt following spinal cord injury. We evaluated spectral power of blood pressure (BP), baroreflex sensitivity (BRS), baroreflex effectiveness index (BEI), occurrence of systolic blood pressure (SBP) ramps, baroreflex sequences, and cross-correlation of SBP with heart rate (HR) in low (0.04-0.15 Hz)- and high (0.15-0.4 Hz)-frequency regions. During tilt, AB and PARA effectively regulated BP and HR, but TETRA did not. The numbers of SBP ramps and percentages of heartbeats involved in SBP ramps and baroreflex sequences increased in AB, were unchanged in PARA, and declined in TETRA. BRS was lowest in PARA and declined with tilt in all groups. BEI was greatest in AB and declined with tilt in all groups. Low-frequency power of BP and the peak of the SBP/HR cross-correlation magnitude were greatest in AB, increased during tilt in AB, remained unchanged in PARA, and declined in TETRA. The peak cross-correlation magnitude in HF decreased with tilt in all groups. Our data indicate that spinal cord injury results in decreased stimulation of arterial baroreceptors and less engagement of feedback control as demonstrated by lower 1) spectral power of BP, 2) number (and percentages) of SBP ramps and barosequences, 3) cross-correlation magnitude of SBP/HR, 4) BEI, and 5) changes in delay between SBP/HR. Diminished vasomotion and impaired baroreflex regulation may be major contributors to decreased orthostatic tolerance following injury.  相似文献   

11.
Acute exposure to hypobaric hypoxia at high altitude is reported to cause sympathetic dominance that may contribute to the pathophysiology of high altitude illnesses. The effect of prolonged stay at high altitude on autonomic functions, however, remains to be explored. Thus, the present study aimed at investigating the effect of high altitude on autonomic neural control of cardiovascular responses by monitoring heart rate variability (HRV) during chronic hypobaric hypoxia. Baseline electrocardiography (ECG) data was acquired from the volunteers at mean sea level (MSL) (<250 m) in Rajasthan. Following induction of the study population to high altitude (4500–4800 m) in Ladakh region, ECG data was acquired from the volunteers after 6 months (ALL 6) and 18 months of induction (ALL 18). Out of 159 volunteers who underwent complete investigation during acquisition of baseline data, we have only included the data of 104 volunteers who constantly stayed at high altitude for 18 months to complete the final follow up after 18 months. HRV parameters, physiological indices and biochemical changes in serum were investigated. Our results show sympathetic hyperactivation along with compromise in parasympathetic activity in ALL 6 and ALL 18 when compared to baseline data. Reduction of sympathetic activity and increased parasympathetic response was however observed in ALL 18 when compared to ALL 6. Our findings suggest that autonomic response is regulated by two distinct mechanisms in the ALL 6 and ALL 18. While the autonomic alterations in the ALL 6 group could be attributed to increased sympathetic activity resulting from increased plasma catecholamine concentration, the sympathetic activity in ALL 18 group is associated with increased concentration of serum coronary risk factors and elevated homocysteine. These findings have important clinical implications in assessment of susceptibility to cardio-vascular risks in acclimatized lowlanders staying for prolonged duration at high altitude.  相似文献   

12.
自主神经系统参与低氧下的免疫调节作用   总被引:2,自引:0,他引:2  
目的:探讨低氧条件下自主祖辈 经系统对大鼠脾淋巴细胞转化的调节作用。方法:检测减压低氧下外周血中神经递质与脾淋巴细胞转化。结果:大鼠5km低氧暴露24h,脾淋巴细胞对丝裂原反应性下降,外周交感神经损毁后则可阻断低氧对此的抑制作用;小鼠于真空瓶中0.07MPa缺氧10min血浆中去甲肾上腺素(NE)与肾上腺素(E)均明显升高;大鼠5km低氧24h,血浆中乙酰胆碱水平下降;体外培养的大鼠脾淋邓细胞中加入不同浓度的乙酰胆碱,胸腺嘧啶核苷掺入作用呈浓度依赖性增加。结论:以上结果提示自主神经系统参与低氧下的免疫调节,交感神经系统有免疫抑制作用,副交感神经起免疫增强作用。  相似文献   

13.
Circadian relations among cardiovascular variables of young adults.   总被引:2,自引:0,他引:2  
Every 4 hours for 24 hours, 14 clinically healthy young individuals (6 women and 8 men), 26 +/- 4 years of age, measured systolic (S) and diastolic (D) blood pressure (BP) by sphygmomanometer and heart rate by ECG and did impedance cardiography under usual living conditions. Stroke volume (SV), cardiac output (CO) and total peripheral resistance (TPR) were calculated. Time series of SBP, DBP, HR, SV, CO and TPR were analyzed by single and population-mean cosinor. A circadian cardiovascular rhythm is demonstrated by rejection of the zero amplitude assumption in the population-mean cosinor test for SBP, DBP, HR, SV, CO and TPR (P < 0.01). TPR peaks around 0400 (-61 degrees from local midnight), in antiphase with all other variables, their acrophase occurring around 1600 (-240 degrees). A circadian rhythm of statistical significance or of borderline statistical significance is found for all variables except TPR in women. Circadian rhythm characteristics were otherwise mostly similar in men and women with a statistically significant gender difference found by parameter tests only for the MESOR and amplitude of SBP.  相似文献   

14.
Both acute hypoxia and sildenafil may influence autonomic control through transient cardiovascular effects. In a double-blind study, we investigated whether sildenalfil (Sil) could interfere with cardiovascular effects of hypoxia. Twelve healthy men [placebo (Pla) n = 6; Sil, n = 6] were exposed to an altitude of 4,350 m during 6 days. Treatment was continuously administered from 6 to 8 h after arrival at altitude (3 x 40 mg/day). The autonomic control on the heart was assessed by heart rate variability (HRV) during sleep at sea level (SL) and between day 1-2 and day 5-6 in hypoxia. Arterial pressure (AP) and total peripheral resistances (TPR) were obtained during daytime. There was no statistical difference between groups in HRV, AP, and TPR throughout the study. Hypoxia induced a decrease in R-R interval and an increase in AP in both groups. Low frequency-to-high frequency ratio increased at day 1-2 (Pla, P = 0.04; Sil, P = 0.02) and day 5-6 (Pla and Sil, P = 0.04) vs. SL, whereas normalized high-frequency power decreased only in Pla (P = 0.04, day 1-2 vs. SL). Normalized low-frequency power increased at high altitude (Pla and Sil, P = 0.04, day 5-6 vs. SL). TPR decreased at day 2 in Pla (P = 0.02) and tended to normalize at day 6 (P = 0.07, day 6 vs. day 2). Acute hypoxia induced a decrease in parasympathetic and increase in sympathetic tone, which tended to be reversed with acclimatization. Sil had no deleterious effects on the cardiovascular response to high-altitude exposure and its control by the autonomic nervous system.  相似文献   

15.
The aims of this study were 1) to evaluate whether subjects suffering from acute mountain sickness (AMS) during exposure to high altitude have signs of autonomic dysfunction and 2) to verify whether autonomic variables at low altitude may identify subjects who are prone to develop AMS. Forty-one mountaineers were studied at 4,559-m altitude. AMS was diagnosed using the Lake Louise score, and autonomic cardiovascular function was explored using spectral analysis of R-R interval and blood pressure (BP) variability on 10-min resting recordings. Seventeen subjects (41%) had AMS. Subjects with AMS were older than those without AMS (P < 0.01). At high altitude, the low-frequency (LF) component of systolic BP variability (LF(SBP)) was higher (P = 0.02) and the LF component of R-R variability in normalized units (LF(RR)NU) was lower (P = 0.001) in subjects with AMS. After 3 mo, 21 subjects (43% with AMS) repeated the evaluation at low altitude at rest and in response to a hypoxic gas mixture. LF(RR)NU was similar in the two groups at baseline and during hypoxia at low altitude but increased only in subjects without AMS at high altitude (P < 0.001) and did not change between low and high altitude in subjects with AMS. Conversely, LF(SBP) increased significantly during short-term hypoxia only in subjects with AMS, who also had higher resting BP (P < 0.05) than those without AMS. Autonomic cardiovascular dysfunction accompanies AMS. Marked LF(SBP) response to short-term hypoxia identifies AMS-prone subjects, supporting the potential role of an exaggerated individual chemoreflex vasoconstrictive response to hypoxia in the genesis of AMS.  相似文献   

16.
We examined potential mechanisms (autonomic function, hypotension, and cerebral hypoperfusion) responsible for orthostatic intolerance following prolonged exercise. Autonomic function and cerebral hemodynamics were monitored in seven athletes pre-, post- (<4 h), and 48 h following a mountain marathon [42.2 km; cumulative gain approximately 1,000 m; approximately 15 degrees C; completion time, 261 +/- 27 (SD) min]. In each condition, middle cerebral artery blood velocity (MCAv), blood pressure (BP), heart rate (HR), and cardiac output (Modelflow) were measured continuously before and during a 6-min stand. Measurements of HR and BP variability and time-domain analysis were used as an index of sympathovagal balance and baroreflex sensitivity (BRS). Cerebral autoregulation was assessed using transfer-function gain and phase shift in BP and MCAv. Hypotension was evident following the marathon during supine rest and on standing despite increased sympathetic and reduced parasympathetic control, and elevations in HR and cardiac output. On standing, following the marathon, there was less elevation in normalized low-frequency HR variability (P < 0.05), indicating attenuated sympathetic activation. MCAv was maintained while supine but reduced during orthostasis postmarathon [-10.4 +/- 9.8% pre- vs. -15.4 +/- 9.9% postmarathon (%change from supine); P < 0.05]; such reductions were related to an attenuation in BRS (r = 0.81; P < 0.05). Cerebral autoregulation was unchanged following the marathon. These findings indicate that following prolonged exercise, hypotension and postural reductions in autonomic function or baroreflex control, or both, rather than a compromise in cerebral autoregulation, may place the brain at risk of hypoperfusion. Such changes may be critical factors in collapse following prolonged exercise.  相似文献   

17.
Spontaneously hypertensive rats (SHR-SP) were adapted to intermittent hypobaric hypoxia in an altitude chamber for 40 days. The adaptation to hypoxia prevented an excessive endothelium-dependent relaxation and hypotension characteristic of myocardial infarction. The adaptation also attenuated the increase in blood pressure and prevented impairment of the endothelium-dependent relaxation in SHR-SP. The universal nature of the adaptation allows to use it for correcting many cardiovascular disorders related to diverse alterations of NO metabolism.  相似文献   

18.
Increasing arterial blood pressure (AP) decreases ventilation, whereas decreasing AP increases ventilation in experimental animals. To determine whether a "ventilatory baroreflex" exists in humans, we studied 12 healthy subjects aged 18-26 yr. Subjects underwent baroreflex unloading and reloading using intravenous bolus sodium nitroprusside (SNP) followed by phenylephrine ("Oxford maneuver") during the following "gas conditions:" room air, hypoxia (10% oxygen)-eucapnia, and 30% oxygen-hypercapnia to 55-60 Torr. Mean AP (MAP), heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), expiratory minute ventilation (V(E)), respiratory rate (RR), and tidal volume were measured. After achieving a stable baseline for gas conditions, we performed the Oxford maneuver. V(E) increased from 8.8 ± 1.3 l/min in room air to 14.6 ± 0.8 l/min during hypoxia and to 20.1 ± 2.4 l/min during hypercapnia, primarily by increasing tidal volume. V(E) doubled during SNP. CO increased from 4.9 ± .3 l/min in room air to 6.1 ± .6 l/min during hypoxia and 6.4 ± .4 l/min during hypercapnia with decreased TPR. HR increased for hypoxia and hypercapnia. Sigmoidal ventilatory baroreflex curves of V(E) versus MAP were prepared for each subject and each gas condition. Averaged curves for a given gas condition were obtained by averaging fits over all subjects. There were no significant differences in the average fitted slopes for different gas conditions, although the operating point varied with gas conditions. We conclude that rapid baroreflex unloading during the Oxford maneuver is a potent ventilatory stimulus in healthy volunteers. Tidal volume is primarily increased. Ventilatory baroreflex sensitivity is unaffected by chemoreflex activation, although the operating point is shifted with hypoxia and hypercapnia.  相似文献   

19.
Song SJ  Xu Y  Li FF  Yuan F  Zhou ZN  Zhang Y 《生理学报》2011,63(3):205-210
本研究旨在探讨慢性间歇性低压低氧(chronicintermittent hypobaric hypoxia,CIHH)对大鼠胸主动脉和肺动脉收缩功能的影响及其机制.雄性Sprague-Dawley大鼠随机分为4组:CIHH处理14天组(CIHH 14)、28天组(CIHH 28)、42天组(CIHH 42)和对照组(...  相似文献   

20.
The present study was performed to clarify the effects of intermittent exposure to an altitude of 4,500 m with endurance training and detraining on ventilatory chemosensitivity. Seven subjects (sea-level group) trained at sea level at 70% maximal oxygen uptake (VO2 max) for 30 min/day, 5 days/wk for 2 wk, whereas the other seven subjects (altitude group) trained at the same relative intensity (70% altitude VO2 max) in a hypobaric chamber. VO2 max, hypoxic ventilatory response (HVR), and hypercapnic ventilatory response, as an index of central hypercapnic chemosensitivity (HCVR) and as an index of peripheral chemosensitivity (HCVRSB), were measured. In both groups VO2 max increased significantly after training, and a significant loss of VO2 max occurred during 2 wk of detraining. HVR tended to increase in the altitude group but not significantly, whereas it decreased significantly in the sea-level group after training. HCVR and HCVRSB did not change in each group. After detraining, HVR returned to the pretraining level in both groups. These results suggest that ventilatory chemosensitivity to hypoxia is more variable by endurance training and detraining than that to hypercapnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号