首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
BACKGROUND: The incretin effect is reduced and the insulinotropic effect of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is abolished in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE AND DESIGN: To evaluate the causality of this deficiency we investigated 8 patients with chronic pancreatitis (CP) and normal glucose tolerance (NGT) (fasting plasma glucose (FPG): 5.5 (4.5-6.0) mM (mean (range); HbA(1c): 5.8 (5.4-6.3) %) and 8 patients with CP and secondary diabetes not requiring insulin (FPG: 7.1 (6.0-8.8) mM; HbA(1c): 7.0 (5.8-10.0) %) during three 15-mM hyperglycaemic clamps with continuous iv infusion of saline, glucagon-like peptide-1 (GLP-1) or GIP. RESULTS: The initial (0-20 min) insulin and C-peptide responses were enhanced significantly in both groups by GLP-1 and GIP, respectively, compared to saline (P<0.05). In both groups GLP-1 infusion resulted in significantly greater insulin and C-peptide responses from 20-120 min compared with saline infusion. During GIP infusion the late-phase insulin response (20-120 min) was 3.1+/-1.0 fold greater than during saline infusion in the group of patients with CP and NGT (P<0.05), whereas there was no significant differences in patients with CP and DM. CONCLUSIONS: The lack of GIP amplification of the late insulin response to iv glucose develops alongside the deterioration of glucose tolerance in patients with CP, suggesting that the same may be true for the loss of the GIP effect in patients with T2DM.  相似文献   

2.
Among the products of enteroendocrine cells are the incretins glucagon-like peptide-1 (GLP-1, secreted by L cells) and glucose-dependent insulinotropic peptide (GIP, secreted by K cells). These are key modulators of insulin secretion, glucose homeostasis, and gastric emptying. Because of the rapid early rise of GLP-1 in plasma after oral glucose, we wished to definitively establish the absence or presence of L cells, as well as the relative distribution of the incretin cell types in human duodenum. We confirmed the presence of proglucagon and pro-GIP genes, their products, and glucosensory molecules by tissue immunohistochemistry and RT-PCR of laser-captured, single duodenal cells. We also assayed plasma glucose, incretin, and insulin levels in subjects with normal glucose tolerance and type 2 diabetes for 120 min after they ingested 75 g of glucose. Subjects with normal glucose tolerance (n=14) had as many L cells (15+/-1), expressed per 1,000 gut epithelial cells, as K cells (13+/-1), with some containing both hormones (L/K cells, 5+/-1). In type 2 diabetes, the number of L and L/K cells was increased (26+/-2; P<0.001 and 9+/-1; P < 0.001, respectively). Both L and K cells contained glucokinase and glucose transporter-1, -2, and -3. Newly diagnosed type 2 diabetic subjects had increased plasma GLP-1 levels between 20 and 80 min, concurrently with rising plasma insulin levels. Significant coexpression of the main incretin peptides occurs in human duodenum. L and K cells are present in equal numbers. New onset type 2 diabetes is associated with a shift to the L phenotype.  相似文献   

3.
The primary aims of this study were to evaluate the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) on gastric emptying (GE) of, and the blood pressure (BP), glycemic, insulin, and incretin responses to, oral glucose in older subjects. Eight healthy subjects (4 males and 4 females, aged 70.9 +/- 1.3 yr) were studied on two separate days, in double-blind, randomized order. Subjects received an intravenous infusion of either l-NAME (180 mug.kg(-1).h(-1)) or saline (0.9%) at a rate of 3 ml/min for 150 min. Thirty minutes after the commencement of the infusion (0 min), subjects consumed a 300-ml drink containing 50 g glucose labeled with 20 MBq (99m)Tc-sulfur colloid, while sitting in front of a gamma camera. GE, BP (systolic and diastolic), heart rate (HR), blood glucose, plasma insulin, and incretin hormones, glucose-dependant insulinotropic-polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), were measured. l-NAME had no effect on GE, GIP, and GLP-1. Between -30 and 0 min l-NAME had no effect on BP or HR. After the drink (0-60 min), systolic and diastolic BP fell (P < 0.05) and HR increased (P < 0.01) during saline; these effects were attenuated (P < 0.001) by l-NAME. Blood glucose levels between 90 and 150 min were higher (P < 0.001) and plasma insulin were between 15 and 150 min less (P < 0.001) after l-NAME. The fall in BP, increase in HR, and stimulation of insulin secretion by oral glucose in older subjects were mediated by NO mechanisms by an effect unrelated to GE or changes in incretin hormones.  相似文献   

4.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet function after carbohydrate ingestion. Whether incretin hormones are of importance for islet function after ingestion of noncarbohydrate macronutrients is not known. This study therefore examined integrated incretin and islet hormone responses to ingestion of pure fat (oleic acid; 0.88 g/kg) or protein (milk and egg protein; 2 g/kg) over 5 h in healthy men, aged 20-25 yr (n=12); plain water ingestion served as control. Both intact (active) and total GLP-1 and GIP levels were determined as was plasma activity of dipeptidyl peptidase-4 (DPP-4). Following water ingestion, glucose, insulin, glucagon, GLP-1, and GIP levels and DPP-4 activity were stable during the 5-h study period. Both fat and protein ingestion increased insulin, glucagon, GIP, and GLP-1 levels without affecting glucose levels or DPP-4 activity. The GLP-1 responses were similar after protein and fat, whereas the early (30 min) GIP response was higher after protein than after fat ingestion (P<0.001). This was associated with sevenfold higher insulin and glucagon responses compared with fat ingestion (both P<0.001). After protein, the early GIP, but not GLP-1, responses correlated to insulin (r(2)=0.86; P=0.0001) but not glucagon responses. In contrast, after fat ingestion, GLP-1 and GIP did not correlate to islet hormones. We conclude that, whereas protein and fat release both incretin and islet hormones, the early GIP secretion after protein ingestion may be of primary importance to islet hormone secretion.  相似文献   

6.
GIP metabolite [GIP (3-42)] and GLP-1 metabolite [GLP-1 (9-36) amide] have been reported to differ with regard to biological actions. Systemic DPP-4 inhibition can therefore reveal different actions of GIP and GLP-1. In catheter wearing Wistar rats, insulinotropic effects of equipotent doses of GIP (2.0 nmol/kg) and GLP-1 (7-36) amide (4.0 nmol/kg) and vehicle were tested in the absence/presence of DPP-4 inhibition. Blood glucose and insulin were frequently sampled. DPP-4 inhibitor was given at -20 min, the incretin at -5 min and the intravenous glucose tolerance test (0.4 g glucose/kg) commenced at 0 min. G-AUC and I-AUC, insulinogenic index and glucose efflux, were calculated from glucose and insulin curves. Systemic DPP-4 inhibition potentiated the acute GIP incretin effects: I-AUC (115±34 vs. 153±39 ng·min/ml), increased the insulinogenic index (0.74±0.24 vs. 0.99±0.26 ng/mmol), and improved glucose efflux (19.8±3.1 vs. 20.5±5.0 min?1). The GLP-1 incretin effects were diminished: I-AUC (124±18 vs. 106±38 ng·min/ml), the insulinogenic index was decreased (0.70±0.18 vs. 0.50±0.19 ng/mmol), and glucose efflux declined (14.9±3.1 vs. 11.1±3.7 min?1). GLP-1 and GIP differ remarkably in their glucoregulatory actions in healthy rats when DPP-4 is inhibited. These previously unrecognized actions of DPP-4 inhibitors could have implications for future use in humans.  相似文献   

7.
Small intestinal motor activity is important for the optimal digestion and absorption of nutrients. These motor responses to feeding are frequently abnormal during critical illness, with the persistence of migrating bursts of contractions during enteral feeding. Whether this disturbance influences nutrient absorption is not known. In this study, the effects of small intestinal burst activity on lipid and glucose absorption were evaluated in 10 healthy human adults (6 males, 4 females, 19-47 yr). Upper gastrointestinal manometry was recorded for 6 h during and shortly after a 20-min intravenous infusion of either erythromycin (1 mg/kg), to stimulate burst activity, or saline (0.9%) in a double-blind randomized fashion. Simultaneously with the start of the intravenous infusion, 60 ml liquid feed mixed with 200 microl 13C-triolein and 2 g 3-O-methylglucose (3-OMG) was infused intraduodenally for 30 min. Absorption of lipid and glucose was assessed using the [13C]triolein breath test and plasma concentrations of 3-OMG, respectively. Infusion of erythromycin was followed by a more rapid onset of burst activity following commencement of the duodenal infusion compared with saline (30 +/- 6.1 vs. 58 +/- 10.7 min; P < 0.05). Erythromycin was associated with a slower recovery of 13CO2 (P < 0.01). A positive correlation existed between the time to onset of burst activity and 13CO2 recovery (P < 0.001). Erythromycin had no effect on 3-OMG absorption. In conclusion, stimulation of small intestinal burst activity reduces the rate of lipid absorption but not glucose absorption in healthy human adults.  相似文献   

8.
AIMS/HYPOTHESIS: Since insulin secretion in response to exogenous gastric inhibitory polypeptide (GIP) is diminished not only in patients with type 2 diabetes, but also in their normal glucose-tolerant first-degree relatives, it was the aim to investigate the integrity of the entero-insular axis in such subjects. METHODS: Sixteen first-degree relatives of patients with type 2 diabetes (4 male, 12 female, age 50+/-12 years, BMI 26.1+/-3.8 kg/m(2)) and 10 matched healthy controls (negative family history, 6 male, 4 female, 45+/-13 years, 26.1+/-4.2 kg/m(2)) were examined with an oral glucose load (75 g) and an "isoglycaemic" intravenous glucose infusion. Blood was drawn over 240 min for plasma glucose (glucose oxidase), insulin, C-peptide, GIP and glucagon-like peptide 1 (GLP-1; specific immunoassays). RESULTS: The pattern of glucose concentrations could precisely be copied by the intravenous glucose infusion (p=0.99). Insulin secretion was stimulated significantly more by oral as compared to intravenous glucose in both groups (p<0.0001). The percent contribution of the incretin effect was similar in both groups (C-peptide: 61.9+/-5.4 vs. 64.4+/-5.8%; p=0.77; insulin: 74.2+/-3.3 vs. 75.8+/-4.9; p=0.97; in first-degree relatives and controls, respectively). The individual responses of GIP and GLP-1 secretion were significantly correlated with each other (p=0.0003). The individual secretion of both GIP and GLP-1 was identified as a strong predictor of the integrated incremental insulin secretory responses as well as of the incretin effect. CONCLUSION/INTERPRETATION: Despite a lower insulin secretory response to exogenous GIP, incretin effects are similar in first-degree relatives of patients with type 2 diabetes and control subjects. This may be the result of a B cell secretory defect that affects stimulation by oral and intravenous glucose to a similar degree. Nevertheless, endogenous secretion of GIP and GLP-1 is a major determinant of insulin secretion after oral glucose.  相似文献   

9.
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity–diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O2 consumption, CO2 production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.  相似文献   

10.
Gastric emptying is a major determinant of glycemia, gastrointestinal hormone release, and appetite. We determined the effects of different intraduodenal glucose loads on glycemia, insulinemia, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK), antropyloroduodenal motility, and energy intake in healthy subjects. Blood glucose, plasma hormone, and antropyloroduodenal motor responses to 120-min intraduodenal infusions of glucose at 1) 1 ("G1"), 2) 2 ("G2"), and 3) 4 ("G4") kcal/min or of 4) saline ("control") were measured in 10 healthy males in double-blind, randomized fashion. Immediately after each infusion, energy intake at a buffet meal was quantified. Blood glucose rose in response to all glucose infusions (P < 0.05 vs. control), with the effect of G4 and G2 being greater than that of G1 (P < 0.05) but with no difference between G2 and G4. The rises in insulin, GLP-1, GIP, and CCK were related to the glucose load (r > 0.82, P < 0.05). All glucose infusions suppressed antral (P < 0.05), but only G4 decreased duodenal, pressure waves (P < 0.01), resulted in a sustained stimulation of basal pyloric pressure (P < 0.01), and decreased energy intake (P < 0.05). In conclusion, variations in duodenal glucose loads have differential effects on blood glucose, plasma insulin, GLP-1, GIP and CCK, antropyloroduodenal motility, and energy intake in healthy subjects. These observations have implications for strategies to minimize postprandial glycemic excursions in type 2 diabetes.  相似文献   

11.
The discoverers of secretin already thought of the existence of a chemical excitant for the internal secretion of the pancreas. Numerous experiments have been performed and published between 1906 and 1935 testing the effect of injected or ingested duodenal ("secretin") extracts on fasting or elevated blood glucose levels of normal or diabetic animals and humans with contradictory results. In 1940, after a series of negative dog experiments performed by an opinion leader, the existence of an incretin was considered questionable and further research stopped for more than 20 years. However, after the development of the radio-immunoassay, the incretin-concept has been revived in 1964, showing that significantly more insulin was released after ingestion of glucose than after intravenous injection. The possibility that nerves or one of the known gut hormones were responsible for the incretin effect could be ruled out. In 1970, glucose dependent insulinotropic polypeptide (GIP), and finally, in 1985 glucagon-like peptide 1 (GLP-1) and its truncated form GLP-1(7-36) were recognized as true incretins. Thereafter, multiple antidiabetic qualities and the therapeutic perspectives of GLP-1(7-36) and its analogues and mimetics have been demonstratred.  相似文献   

12.
Oral fructose empties from the stomach more rapidly and may suppress food intake more than oral glucose. The purpose of the study was to evaluate the effects of intraduodenal infusions of fructose and glucose on antropyloric motility and appetite. Ten healthy volunteers were given intraduodenal infusions of 25% fructose, 25% glucose, or 0.9% saline (2 ml/min for 90 min). Antropyloric pressures, blood glucose, and plasma insulin, gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) were measured concurrently; a buffet meal was offered at the end of the infusion. Intraduodenal fructose and glucose suppressed antral waves (P < 0. 0005 for both), stimulated isolated pyloric pressure waves (P < 0.05 for both), and increased basal pyloric pressure (P = 0.10 and P < 0. 05, respectively) compared with saline, without any significant difference between them. Intraduodenal glucose increased blood glucose (P < 0.0005), as well as plasma insulin (P < 0.0005) and GIP (P < 0.005) more than intraduodenal fructose, whereas there was no difference in the GLP-1 response. Intraduodenal fructose suppressed food intake compared with saline (P < 0.05) and glucose (P = 0.07). We conclude that, when infused intraduodenally at 2 kcal/min for 90 min 1) fructose and glucose have comparable effects on antropyloric pressures, 2) fructose tends to suppress food intake more than glucose, despite similar GLP-1 and less GIP release, and 3) GIP, rather than GLP-1, probably accounts for the greater insulin response to glucose than fructose.  相似文献   

13.
The rate of gastric emptying of glucose-containing liquids is a major determinant of postprandial glycemia. The latter is also dependent on stimulation of insulin secretion by glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Although overall emptying of glucose approximates 1-3 kcal/min, the "early phase" of gastric emptying is usually more rapid. We have evaluated the hypothesis that increased stimulation of incretin hormones and insulin by a more rapid initial rate of small intestinal glucose delivery would reduce the overall glycemic response to a standardized enteral glucose load. Twelve healthy subjects were studied on two separate days in which they received an intraduodenal (id) glucose infusion for 120 min. On one day, the infusion rate was variable, being more rapid (6 kcal/min) between t = 0 and 10 min and slower (0.55 kcal/min) between t = 10 and 120 min, whereas on the other day the rate was constant (1 kcal/min) from t = 0-120 min, i.e., on both days 120 kcal were given. Between t = 0 and 75 min, plasma insulin, GIP, and GLP-1 were higher with the variable infusion. Despite the increase in insulin and incretin hormones, blood glucose levels were also higher. Between t = 75 and 180 min, blood glucose and plasma insulin were lower with the variable infusion. There was no difference in the area under the curve 0-180 min for blood glucose. We conclude that stimulation of incretin hormone and insulin release by a more rapid initial rate of id glucose delivery does not lead to an overall reduction in glycemia in healthy subjects.  相似文献   

14.
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.  相似文献   

15.
Previous observations suggest that glucagon-like peptide-1 (GLP-1) is released into the bloodstream only when dietary carbohydrate enters the duodenum at rates that exceed the absorptive capacity of the proximal small intestine to contact GLP-1 bearing mucosa in more distal bowel. The aims of this study were to determine the effects of modifying the length of small intestine exposed to glucose on plasma concentrations of GLP-1 and also glucose-dependent insulinotropic peptide (GIP), insulin, cholecystokinin (CCK) and ghrelin, and antropyloric pressures. Glucose was infused at 3.5 kcal/min into the duodenum of eight healthy males (age 18-59 yr) over 60 min on the first day into an isolated 60-cm segment of the proximal small intestine ("short-segment infusion"); on the second day, the same amount of glucose was infused with access to the entire small intestine ("long-segment infusion"). Plasma GLP-1 increased and ghrelin decreased (P < 0.05 for both) during the long-, but not the short-, segment infusion. By contrast, increases in plasma CCK and GIP did not differ between days. The rises in blood glucose and plasma insulin were greater during the long- than during the short-segment infusion (P < 0.05). During the long- but not the short-segment infusion, antral pressure waves (PWs) were suppressed (P < 0.05). Isolated pyloric PWs and basal pyloric pressure were stimulated on both days. In conclusion, the release of GLP-1 and ghrelin, but not CCK and GIP, is dependent upon >60 cm of the intestine being exposed to glucose.  相似文献   

16.
The biology of incretin hormones   总被引:1,自引:0,他引:1  
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote β cell proliferation and inhibit apoptosis, leading to expansion of β cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.  相似文献   

17.
The available evidence suggests that about two-thirds of the insulin response to an oral glucose load is due to the potentiating effect of gut-derived incretin hormones. The strongest candidates for the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). In patients with type 2 diabetes, however, the incretin effect is lost or greatly impaired. It is hypothesized that this loss explains an important part of the impaired insulin secretion in patients. Further analysis of the incretin effects in patients has revealed that the secretion of GIP is near normal, whereas the secretion of GLP-1 is decreased. On the other hand, the insulintropic effect of GLP-1 is preserved, whereas the effect of GIP is greatly reduced, mainly because of a complete loss of the normal GIP-induced potentiation of second-phase insulin secretion. These two features, therefore, explain the incretin defect of type 2 diabetes. Strong support for the hypothesis that the defect plays an important role in the insulin deficiency of patients is provided by the finding that administration of excess GLP-1 to patients may completely restore the glucose-induced insulin secretion as well as the beta-cells' sensitivity to glucose. Because of this, analogs of GLP-1 or GLP-1 receptor activations are currently being developed for diabetes treatment, so far with very promising results.  相似文献   

18.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

19.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

20.
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut-derived incretins secreted in response to nutrient ingestion. Both incretins potentiate glucose-dependent insulin secretion and enhance beta-cell mass through regulation of beta-cell proliferation, neogenesis and apoptosis. In contrast, GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. Furthermore, human subjects with Type 2 diabetes exhibit relative resistance to the actions of GIP, but not GLP-1R agonists. The physiological importance of both incretins has been investigated through generation and analysis of incretin receptor knockout mice. Elimination of incretin receptor action in GIPR-/- or GLP-1R-/- mice produces only modest impairment in glucose homeostasis. Similarly, double incretin receptor knockout (DIRKO) mice exhibit normal body weight and normal levels of plasma glucagon and hypoglycemic responses to exogenous insulin. However, glucose-stimulated insulin secretion is significantly decreased following oral but not intraperitoneal glucose challenge in DIRKO mice and the glucose lowering actions of dipeptidyl peptidase-IV (DPP-IV) inhibitors are extinguished in DIRKO mice. Hence, incretin receptor signaling exerts physiologically relevant actions critical for glucose homeostasis, and represents a pharmacologically attractive target for development of agents for the treatment of Type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号