首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A rapid and high frequency plant propagation system has been established in Cymbopogon martinii var motia using rhizome culture. Different concentrations of auxins, such as 5.36 μM Napthalene acetic acid (NAA) and 5.71μM Indole 3acetic acid (IAA) satisfactorily induced shoot buds when applied individually or in combination with 4.40μM N6-Benzyladenine (BA) on MS medium. Multiple shoot proliferation was noted when induced microshoots were cultured on MS medium supplemented with BA either alone or with NAA. Shoot bud induction and multiple shoot formation were enhanced significantly with the application of growth additives like coconut water (CW) and biotin. Out of the two auxins (IAA and IBA) tested, rooting percentage and number of roots/shoot was significantly higher on 1/2 MS medium supplemented with 4.90 μM Indole 3- butyric acid (IBA). Twelve reproducible ISSR primers efficiently screened 16 randomly chosen regenerants of C. martinii with similar monomorphic banding profiles exhibiting genetic stability of the regenerants.  相似文献   

2.
An efficient micropropagation protocol for annatto (Bixa orellana L.) was achieved using nodal shoot tip explants. Shoot buds were obtained on the Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of indole-3-acetic acid (IAA), N6-benzyladenine (BA) and triacontanol (TRIA). Maximum of 213 shoot buds along with 18 primary shoots were produced on MS medium containing 0.05 μM IAA, 8.87 μM BA, and 11.2 μM TRIA. The primary shoots elongated best on MS medium containing 6.66 μM BA and 2.45 μM indole-3-butyric acid (IBA). The regenerated shoots rooted best on MS medium supplemented with 4.9 μM IBA. The in vitro rooted plantlets were hardened and establishment rate under field conditions was 70 to 80 %.  相似文献   

3.
A procedure for in vitro propagation of pharmaceutically valuable varieties of Caralluma adscendens from nodal explant, is described. The highest shoot multiplication with 80% frequency was achieved within one month on Murashige and Skoog’s medium supplemented with 8.87 μM BA. Shoot multiplication occurred in subsequent subcultures in culture bottles on MS medium. Regenerated shoots were rooted on half strength MS medium supplemented with NAA (0.54 μM) in all the three varieties. The rooted plants were hardened for establishment in soil.  相似文献   

4.
Micropropagation of Dalbergia sissoo Roxb was achieved through in vitro proliferation of axillary buds from 30 to 40 years old mature tree. Bud-break was achieved within six days when nodal explants were cultured on MS medium supplemented with kinetin (9.2 μm), indole-3-butyric acid (2.46 μM) apd 6-benzyladenine (13.2 μM). Multiple shoot formation occurred from nodal explants of in vitro raised shoots on MS medium with reduced levels of major salts and kinetin. Roots were Induced within 5 days on in vitro generated shoots on MS medium supplemented with 1-naphthalene acetic acid (0.53 μM) and indole-3-butyric acid (9.8 μM).  相似文献   

5.
The callus mediated regeneration system for Balanites aegyptiaca (L) Del is reported here. Different explants like apical buds, young thorns and cotyledon pieces from mature tree and root segments from in vitro raised seedlings were used for callus induction on MS medium supplemented with 2.23 μM 2,4-Dichlorophenoxyacetic acid. Seven to eight weeks old calli were transferred on hormone free MS medium in order to get regeneration. Shoot morphogenesis was achieved only from cotyledon-derived callus. The shoots so produced rooted well, when cultured on B5 medium supplemented with 9.84 μM Indole-3-butyric acid. Plantlets have been transferred to the field after two-phase hardening and are performing well.  相似文献   

6.
An efficient in vitro plant regeneration from leaf-disc culture of Jatropha curcas L has been established. Adventitious shoot buds along with callus were induced from leaves of 2-year-old J. curcas plants cultured on Murashige and Skoog’s (MS) medium supplemented with TDZ (2 μM) BAP (2 μM) and IBA (1 μM), wherein 63.3% leaf explants responded. The multiplication of shoots was achieved from the adventitious shoot buds after transferring them to shoot induction medium. The highest number of shoots (9.7/explant) was achieved after 6 weeks of culture on MS medium containing 3 μM of BAR The welldeveloped shoots were rooted on MS medium supplemented with IBA (1.5 μM) with the rooting frequency of 53.3%. Addition of phloroglucinol (200 μM) to the medium enhanced the frequency of rooting to 76.7%. Regenerated plantlets were successfully transferred to field after initial acclimatization.  相似文献   

7.
An efficient, rapid, and reproducible plant regeneration protocol was successfully developed for Abrus precatorius L. using mature nodal explants excised from a 5-year-old field grown plant. The highest shoot regeneration frequency (87 %) with maximum number of multiple shoots (15.0) and shoot length (4.8 cm) were recorded on Murashige and Skoog (MS) medium amended with 2.5 μM thidiazuron, 120 mg dm?3 polyvinylpyrrolidone, and 0.5 μM α-naphthalene acetic acid. The best treatment for maximum root (4.0) induction was half strength MS medium supplemented with 1.5 μM indole-3-butyric acid. The in vitro plantlets with well-developed shoots and roots were successfully transferred into plastic cups with Soilrite and acclimatized in a culture room under photon flux density (PFD) of 150 μmol m?2 s?1, thereafter transferred to a greenhouse with PFD of 300 μmol m?2 s?1, and finally to a field with 70 % survival rate. During the acclimatization period (0–49 d), leaf chlorophyll and carotenoid content increased whereas malondialdehyde and H2O2 content decreased probably due to increasing activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase). Our work suggests that micropropagated plants developed an antioxidant enzymatic protective system to avoid oxidative stress during establishment under ex vitro environment.  相似文献   

8.
Genetic improvement of the apomictic forage grass species Cenchrus ciliaris L. based on conventional breeding methods is difficult and time-consuming. However, in vitro genetic manipulation of such species would provide a promising approach. A rapid and high-frequency in vitro plant regeneration protocol is essential for successful application of transgenic technology. This study reports on such a rapid, high-frequency and genotype-independent plant regeneration protocol for C. ciliaris L. Using the multiple shoot induction approach, up to 20 shoots per explant could be induced from shoot tips cultured on MS (Murashige and Skoog) medium when supplemented with 3.0 mg L−1 TDZ. Two cultivars (IGFRI-3108 and IGFRI-727) and three exotic germplasm accessions (EC-397670, EC397496, and EC397336) showed equivalent responses to the protocol. Shoot tips from 4-d-old in vitro grown seedlings were used as explants for multiple shoot induction. Regenerated shoots were cultured on MS medium supplemented with gibberellic acid (2.0 mg L−1) for shoot elongation. The regenerated shoots were rooted on MS medium supplemented with indole-3-acetic acid (3.0 mg L−1). When transferred to soil in pots, hardened plants displayed up to 85% survival under field conditions.  相似文献   

9.
A protocol for multiple shoot bud induction and plant regeneration from leaf segment-derived callus of Ruta graveolens has been developed. Maximum organogenic callus induction frequency (70.6 ± 2.33%) was observed on Murashige and Skoog (MS) medium supplemented with 10 µM 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). Multiple shoot induction was achieved from the surface of the callus when transferred to shoot induction media (MS nutrients supplemented with 6-benzyladenine (BA), kinetin (Kn), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and α-naphthalene acetic acid (NAA) in various concentrations and combinations). The highest shoot multiplication (92.3%) was observed on MS medium with 7.5 µM BA and 1.0 µM NAA. Regenerated shoots were rooted in vitro on MS containing 0.5 µM IBA. Plantlets with well developed root and shoot systems were successfully acclimated (90%) and established in earthen pots containing garden soil; they exhibited normal morphology and growth characteristics.  相似文献   

10.
An efficient and reproducible method for the regeneration of Jatropha curcas plants has been developed. The method employed direct induction of shoot buds from petiole explants, without the formation of an intervening callus using a Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ). The best induction of shoot buds (58.35%) and the number of shoot buds per explant (10.10) were observed when in vitro petiole explants were placed horizontally on MS medium supplemented with 2.27 µM TDZ after 6 weeks. The induced shoot buds were transferred to MS medium containing 10 µM kinetin (Kn), 4.5 µM 6-benzyl aminopurine (BAP) and 5.5 µM α-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA and indole-3-butyric acid (IBA). MS medium supplemented with 2.25 µM BAP and 8.5 µM IAA was found to be the best combination for shoot elongation and 3.01–3.91 cm elongation was achieved after 6 weeks. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. The orientation (horizontal or vertical) and source (in vitro or in vivo) of explants also significantly influenced plant regeneration. The elongated shoots could be rooted on half-strength MS medium supplemented with 2% sucrose, different concentrations and combinations of IBA, IAA and NAA, and 0.25 mg L−1 activated charcoal. Half-strength MS medium supplemented with 2% sucrose, 15 µM IBA, 5.7 µM IAA, 5.5 µM NAA and 0.25 mg L−1 activated charcoal was found to be the best for promoting rooting. The rooted plants could be established in soil with more than 90% survival.  相似文献   

11.
The proposed work describes a protocol for high-frequency in vitro regeneration through nodal segments and shoot tips in Decalepsis arayalpathra, a critically endangered medicinal liana of the Western Ghats. Nodal segments were more responsive than shoot tips in terms of shoot proliferation. Murashige and Skoog’s (MS) basal medium supplemented with 5.0 μM 6-benzyladenine (BA) was optimum for shoot initiation through both the explants. Among different combinations of plant growth regulators and growth additive screened, MS medium added with 5.0 μM BA + 0.5 μM indole-3-acetic acid + 20.0 μM adenine sulphate effectuated the highest response: 11.8 shoots per nodal segment and 5.5 shoots per shoot tip with mean shoot length of 9.2 and 4.8 cm, respectively. Half-strength MS medium with 2.5 μM α-naphthalene acetic acid was optimum for in vitro root induction. The plantlets with the well developed shoot and root were acclimatized in Soilrite? with 92 % survival rate in the field conditions. During acclimatization, chlorophyll content, net photosynthetic rate, stomatal conductance, and transpiration rate were gradually changed in dependence of formation of new leaves. Further, the changes in activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) as well as activity of carbonic anhydrase were also observed: a continuous rise in SOD activity, but a rise and fall in the activities of CAT, APX, and GR were also noticed. Maximum fresh mass (3.1 g plant-1), dry mass (0.35 g plant-1) of roots and 2-hydroxy-4-methoxybenzaldehyde content of 9.22 μg cm-3(root extract) were recorded after 8 weeks of acclimatization.  相似文献   

12.
Summary A protocol was developed for rapid clonal propagation of the important medicinal climber, Tinospora cordifolia, through in vitro culture of mature nodal explants. Shoots were initiated on both Murashige and Skoog (MS) medium and woody plant medium (WPM) supplemented with 2.32 μM kinetin (KIN). Of the two basal media tested, WPM was found to be superior to MS medium for the induction of multiple shoots. Among the cytokinins tested, N6-benzyladenine (BA) was more effective than KIN for axillary shoot proliferation. KIN was superior to BA in terms of shoot elongation. An average multiplication rate of 6.3 shoots per explant was obtained with WPM supplemented with 8.87 μM BA. Shoot clumps harvested from this medium were transferred to WPM supplemented with 2.22 μM BA and 4.65 μM KIN for shoot elongation. Elongated shoots were rooted in half-strength MS medium supplemented with 2.85 μM indole-3-acetic acid (IAA). Rooted plantlets were successfully transferred to sand and established with 80% survival.  相似文献   

13.
Shoot buds were induced directly on either side of midrib from adaxial surface of immature leaf explants in Stevia rebaudiana Bertoni five weeks after culturing in Murashige and Skoog’s nutrient medium supplemented with 8.88 μM of N 6-benzylaminopurine and kinetin ranging from 4.65 to 6.98 μM. Immature leaves of 0.6 to 1 cm were found to produce best response (93 %) with a highest number of 4.93 shoot buds per explant. For elongation of regenerated shoot buds, MS medium supplemented with 30 g dm−3 sucrose and indole-3-butyric acid (IBA) ranging from 4.92 to 7.38 μM were found most suitable. The medium was further modified to suit bioreactor cultivation of regenerated shoots wherein the use of two-fold MS salts and 60 g dm−3 sucrose resulted in a high biomass yield of 50.68 g dm−3 (m/v) accounting for about 590 micro-cuttings in three weeks. Best rooting of micro-cuttings occurred in half strength MS medium supplemented with IBA ranging from 4.92 to 7.38 μM, 15 g dm−3 sucrose and gelled with 0.8 % agar. Rooted plants were successfully established in substrate containing sand, Vermicompost and garden soil in equal proportions and grown in greenhouse. This is the first report on direct shoot regeneration from Stevia leaves.  相似文献   

14.
An in vitro protocol was developed for regeneration of Cyperus pangorei that may supplement enough raw materials for the mat weaving community. Callus was initiated from inflorescence explants on Murashige and Skoog’s (MS) medium supplemented with 5 and 10 μM each of 2, 4-D, 2, 4, 5-T and CPA. Development of numerous de novo spikelets from immature inflorescence explants grown in (10 μM) 2, 4, 5-T was observed. MS with 5 μM Kn and 100 ml l?1 Coconut milk (CM) promoted shoot regeneration from calli. Calli from 2,4-D and CPA medium sub-cultured on medium containing 5 μM BAP, 5 μM Kn, 1 μM IAA and 100 ml l?1 CM produced extensive and rapid rhizogenesis with wiry and scaly roots. Micropropagation using rhizome buds on MS medium with BAP, Kn and Zeatin at 10 μM concentrations resulted in shoot release and multiplication by breaking the bud dormancy. An average of 10 shoots per explant was produced in 10 μM BAP, whereas (10 μM) Kn and (10 μM) Zeatin induced only single shoot formation. The shoots were transferred to rooting media comprising 10 μM IAA with 1 μM BAP or Kn and then acclimatized. The results accomplished were found to be useful in developing a complete in vitro regeneration protocol towards the mass production of Cyperus species, which may provide a basis for further genetic improvements that may prove its use as an alternative natural fibre resource in commercial applications.  相似文献   

15.
Successful micropropagation protocol of a difficult-to-root bamboo species, Dendrocalamus giganteus (10–15 years old) along with the analysis of anatomical and biochemical changes during in vitro rhizogenesis was accomplished. Proliferated axillary shoots from nodal segments of 10–15 years old field culms exhibited shoot necrosis during multiple shoot formation phase and was controlled by subculturing in modified MS liquid medium having 825 mg l?1 NH4NO3, 3800 mg l?1 KNO3, 740 mg l?1 MgSO4 and 9% coconut water, 26.64 μM 6-benzylaminopurine (BA) and 0.46 μM kinetin. These multiple shoots proliferated from field grown culms, failed to root and hence callus was induced on MS solid medium containing 4.44 μM BA, 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 5.37 μM naphthalene acetic acid (NAA). Organogenesis from the callus was achieved upon transfer to MS medium with 11.10 μM BA and 2.32 pM kinetin. The callus-derived shoots multiplied on modified MS medium were rooted the best (91%) by culturing 3 days on MS medium having glucose (0.5%), sucrose (2.5%) and 98.41 μM indolebutyric acid (IBA) and subsequently to IBA-free MS medium containing 3% sucrose. Studies on peroxidase and IAA oxidase activity and endogenous free- and bound-IAA content showed that IAA oxidase and peroxidase oxidize endogenous IAA resulting in root initials formation. Anatomical studies confirmed the root primordia formation from 3rd day of IBA treatment and primordia were visible over the surface on 8th to 10th day. However, the shoot necrosis symptoms which started on 6th day of treatment intensified by 10th day leading to the death of the whole shoot system by 12th–15th day. Nevertheless, on the root formation medium with 9.84 μM IBA, new shoot buds were emerged and showed shoot growth in 60% of the rooted cultures, which were successfully acclimatized in shade-house with 100% survival. The present study establishes rooting of callus-derived shoots as the best way for the successful propagation of the difficult-to-root bamboo, D. giganteus when compared to axillary bud proliferated shoots.  相似文献   

16.
An efficient protocol of shoot organogenesis and plant regeneration from internode derived callus has been developed for Capsicum annuum. Optimal callus was developed from internodal segments on Murashige and Skoog (MS) medium supplemented with 10 μM 2,4-dichlorophenoxy acetic acid (2,4-D) and 2.0 μM 6-benzyladenine (BA). Shoot differentiation was achieved from the surface of callus when transferred on shoot induction medium containing BA and thidiazuron (TDZ) alone or in combination. The highest number of de novo adventitious shoots (25.4?±?1.42) and shoot length (4.6?±?0.37 cm) was recorded on MS medium supplemented with 5.0 μM BA and 2.5 μM TDZ. The individual elongated shoots were rooted well on MS medium supplemented with 1.0 μM Indole-3-butyric acid (IBA). The in vitro raised plantlets with properly developed shoot and roots were acclimatized successfully and grew well in the greenhouse. All the regenerated plants appeared normal with respect to morphology and growth characteristics with 85% survival rate.  相似文献   

17.
Embryonal axis explants from 2-d-old in vitro germinated seeds were used to induce multiple shoot production. The combination of 4.44 μM BA and 1.59 μM NAA in MS medium triggered the initiation of adventitious shoot buds. The explants with shoot buds produced maximum number of shoots (10.6 per explant) in MS medium supplemented with 4.44 μM BA and 0.065 mM L-glutamine in three successive transfers. The elongated shoots were rooted on MS medium with 4.92 μM IBA. Rooted plants were transferred to soil with a survival rate of 65 %.  相似文献   

18.
Protocols for in vitro plant multiplication from somatic tissues and production of artificial seeds through encapsulation of nodes were developed for Aristolochia tagala Cham., a rare and valuable medicinal plant, as a measure of conservation and as a prerequisite for genetic transformation procedure. A maximum number of adventitious shoots were regenerated from leaf-derived callus on Murashige and Skoog (MS) medium containing 6-benzylaminopurine (BAP; 2 μM), α-naphthaleneacetic acid (NAA; 0.5 μM), and phloroglucinol (PG; 10μM). Nodes collected from in vitro established shoot cultures were encapsulated in 3 % (m/v) sodium alginate and 1 % (m/v) calcium chloride. Multiple shoots were successfully regenerated from the encapsulated nodes cultured on MS medium supplemented with 3 μM BAP and 0.5 μM kinetin (KIN). Regenerated shoots from callus and artificial seeds were successfully rooted and acclimated to greenhouse conditions. Since roots of A. tagala are primarily used in traditional medicine, a protocol for regenerating roots directly from the leaf derived callus was also developed. Maximum root length was obtained when the callus was cultured in MS medium supplemented with KIN (1 μM), indole acetic acid (IAA; 0.5 μM), NAA (0.1 μM), and PG (10 μM). Biochemical parameters were studied in calli grown with and without PG in the medium to establish a correlation between these parameters and shoot morphogenesis. An increment of antioxidant enzymes (peroxidase and catalase) and metabolites (sugars and proteins), and a decrease in the amount of polyphenol oxidase was observed in the calli which were grown in the presence of PG.  相似文献   

19.
The effect of copper sulphate on differentiation and elongation of shoot buds from cotyledonary explants of Capsicum annuum L. cv X-235 was investigated. Shoot buds were induced on medium supplemented with 22.2 μM BAP and 14.7 μM PAA. Elongation of shoot buds was obtained on MS medium containing 13.3 μM BAP + 0.58 μM GA3. Both shoot induction and elongation media were supplemented with different levels of CuSO4 (0–5 μM). The levels of CuSO4 in the induction as well as elongation medium highly influenced the shoot bud formation and their subsequent elongation. Highest number of shoot buds per explant was obtained when the concentration of CuSO4 was increased 30 times to the normal MS level. Shoot buds formation frequency i.e., the number of shoots formed per explant was increased two fold as compared to those formed on control. Elongation both in terms of percentage and length of shoots was better than that on control. Healthy elongated shoots were rooted on MS medium supplemented with 5.7 μM IAA. Rooted plantlets were transferred to field conditions.  相似文献   

20.
This report describes in vitro shoot induction and plant regeneration from mature nodal explants of Vitex trifolia L. on Murashige and Skoog (MS) medium fortified with benzylaminopurine (BAP), kinetin (KN), thidiazuron (TDZ), adenine (ADE), and 2-isopentenyladenine (2-iP) (0.25 – 10.0 μM). Multiple shoots differentiated directly without callus mediation within 3 weeks when explants were cultured on medium supplemented with cytokinins. The maximum number of shoots (9 shoots per explant) was developed on a medium supplemented with 5.0 μM BAP. Shoot cultures was established repeatedly subculturing the original nodal explant on the same medium. Rooting of shoots was achieved on half strength MS medium supplemented with 0.5 μM naphthaleneacetic acid (NAA). Rooted plantlets transferred to pots containing autoclaved soil and vermiculite mixture (1:1) showed 90 % survival when transferred to outdoor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号