首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A mechanism of attention is proposed according to which its influence on visual processing is switched on by release of dopamine into the striatum. A dopamine release during involuntary attention is promoted by visual activation of striatonigral cells via the thalamus and subsequent disinhibition through the basal ganglia of the superior colliculus. A dopamine release during voluntary attention is promoted by activation of prefrontal cortex. The strengthening of responses of neocortical neurons to attended stimulus, and suppression of responses to other stimuli is the result of opposite modulatory action of dopamine on the efficacy of strong and weak corticostriatal inputs. This leads to changes in the output basal ganglia signals ("attentional filter") that exert disinhibitory and inhibitory influence (via the thalamus) on neocortical cells that initially were strongly and weakly activated by a stimulus, respectively. From proposed mechanism follows, that attention modulates only those components of responses of cortical neurons which latency exceeds the latency of reactions of dopaminergic cells (80-100 ms).  相似文献   

2.
 We analyse a simplified form of the frontal lobe architecture of cortico-basal ganglia-thalamo-cortical loops to determine the manner in which they can learn temporal sequences as part of working memory activity. In particular, we consider how the temporal duration of activity can arise in this setting. We start from a hard-wired version in which temporally extended activity is created by the `long' loop of cortex → basal ganglia → thalamus → cortex, and show it arises from a near saddle-node bifurcation. The manner in which the transition between patterns occurs is also considered. This is then extended to analyse the temporal sequence storage and regeneration abilities of trained networks with a similar architecture. The temporal dynamics of this activity is also analysed. Implications of this for other working memory activities and for understanding the architecture of the frontal lobes are discussed in conclusion. Received: 12 April 1999 / Accepted in revised form: 5 November 1999  相似文献   

3.
Attention to a visual stimulus typically increases the responses of cortical neurons to that stimulus. Because many studies have shown a close relationship between the performance of individual neurons and behavioural performance of animal subjects, it is important to consider how attention affects this relationship. Measurements of behavioural and neuronal performance taken from rhesus monkeys while they performed a motion detection task with two attentional states show that attention alters the relationship between behaviour and neuronal response. Notably, attention affects the relationship differently in different cortical visual areas. This indicates that a close relationship between neuronal and behavioural performance on a given task persists over changes in attentional state only within limited regions of visual cortex.  相似文献   

4.
A hypothetical mechanism of the basal ganglia involvement in visual hallucinations is proposed. According to this mechanism, hallucination is the result of modulation of the efficacy of corticostriatal synaptic inputs and changes in spiny cell activity due to the rise of striatal dopamine concentration (or due to other reasons). These changes cause an inhibition of neurons in the substantia nigra pars reticulata and subsequent disinhibition of neurons in the superior colliculus and pedunculopontine nucleus (including its cholinergic cells). In the absence of afferentation from the retina this disinhibition leads to activation of neurons in the lateral geniculate nucleus, pulvinar and other thalamic nuclei projecting to the primary and highest visual cortical areas, prefrontal cortex, and also back to the striatum. Hallucinations as conscious visual patterns are the result of selection of signals circulating in several interconnected loops each of which includes one of above mentioned neocortical areas, one of thalamic nuclei, limbic and one of visual areas of the basal ganglia, superior colliculus and/or pedunculopontine nucleus. According to our model, cannabinoids, opioids and ketamine may lead to hallucinations due to their promotional role in the LTD of cortical inputs to GABAergic spiny cells of striatal striosomes projecting to dopaminergic neurons, disinhibition of the lasts, and increase in striatal dopamine concentration.  相似文献   

5.
Silkis I 《Bio Systems》2000,57(3):187-196
It is pointed out that Ca(2+)-dependent modification rules for NMDA-dependent (NMDA-independent) synaptic plasticity in the striatum are similar to those in the neocortex and hippocampus (cerebellum). A unitary postsynaptic mechanism of synaptic modification is proposed. It is based on the assumption that, in diverse central nervous system structures, long-term potentiation/depression (LTP/LTD) of excitatory transmission (depression/potentiation of inhibitory transmission, LTDi/LTPi) is the result of an increasing/decreasing the number of phosphorylated AMPA and NMDA (GABA(A)) receptors. According to the suggested mechanism, Ca(2+)/calmodulin-dependent protein kinase II and protein kinase C, whose activity is positively correlated with Ca(2+) enlargement, together with cAMP-dependent protein kinase A (cGMP-dependent protein kinase G, whose activity is negatively correlated with Ca(2+) rise) mainly phosphorylate ionotropic striatal receptors, if NMDA channels are opened (closed). Therefore, the positive/negative post-tetanic Ca(2+) shift in relation to a previous Ca(2+) rise must cause NMDA-dependent LTP+LTDi/LTD+LTPi or NMDA-independent LTD+LTPi/LTP+LTDi. Dopamine D(1)/D(2) or adenosine A(2A)/A(1) receptor activation must facilitate LTP+LTDi/LTD+LTPi due to an augmenting/lowering PKA activity. Activation of muscarinic M(1)/M(4) receptors must enhance LTP+LTDi/LTD+LTPi as a consequence of an increase/decrease in the activity of protein kinase C/A. The proposed mechanism is in agreement with known experimental data.  相似文献   

6.
Triosephosphate isomerase (TIM), glycerol 3-phosphate dehydrogenase, and orotidine 5'-monophosphate decarboxylase each use the binding energy from the interaction of phosphite dianion with a flexible phosphate gripper loop to activate a second, phosphodianion-truncated, substrate towards enzyme-catalyzed proton transfer, hydride transfer, and decarboxylation, respectively. Studies on TIM suggest that the most important general effect of loop closure over the substrate phosphodianion, and the associated conformational changes, is to extrude water from the enzyme active site. This should cause a decrease in the effective active-site dielectric constant, and an increase in transition state stabilization from enhanced electrostatic interactions with polar amino acid side chains. The most important specific effect of these conformational changes is to increase the basicity of the carboxylate side chain of the active site glutamate base by its placement in a 'hydrophobic cage'.  相似文献   

7.
Summary It has been suggested that the effect of cytokinins in retarding leaf senescence comes about through their incorporation into tRNA. To test this hypothesis, kinetin-8-14C, 6-benzylaminopurine-benzyl-7-14C and adenine-8-3H were applied to detached tobacco leaves, and the nucleic acids were thereafter extracted and chromatographed on MAK columns. Kinetin-8-14C and adenine-8-3H were readily incorporated into RNA in a similar pattern. 6-Benzylaminopurine-benzyl-7-14C was effective in delaying chlorophyll loss but was not incorporated into any nucleic-acid fraction. It is concluded that the possibility of cytokinins retarding leaf senescence by completion of tRNA is not supported.  相似文献   

8.
Silkis I 《Bio Systems》2001,59(1):7-14
A possible mechanism underlying the modulatory role of dopamine, adenosine and acetylcholine in the modification of corticostriatal synapses, subsequent changes in signal transduction through the "direct" and "indirect" pathways in the basal ganglia and variations in thalamic and neocortical cell activity is proposed. According to this mechanism, simultaneous activation of dopamine D1/D2 receptors as well as inactivation of adenosine A1/A(2A) receptors or muscarinic M4/M1 receptors on striatonigral/striatopallidal inhibitory cells can promote the induction of long-term potentiation/depression in the efficacy of excitatory cortical inputs to these cells. Subsequently augmented inhibition of the activity of inhibitory neurons of the output nuclei of the basal ganglia through the "direct" pathway together with reduced disinhibition of these nuclei through the "indirect" pathway synergistically increase thalamic and neocortical cell firing. The proposed mechanism can underlie such well known effects as "excitatory" and "inhibitory" influence of dopamine on striatonigral and striatopallidal cells, respectively; the opposite action of dopamine and adenosine on these cells; antiparkinsonic effects of dopamine receptor agonists and adenosine or acetylcholine muscarinic receptor antagonists.  相似文献   

9.
10.
11.
Visual processing in avian retina is interpreted by means of a layered model in which: a) outer layers provide with spatio temporal fast and retarded versions of the stimuli incident on the retina; a possibility is that horizontal cells are involved in isotropically generating the retarded version which is transversally translated; b) prominent specialization of ganglion cells is the result of local non-linear lateral interaction at the inner plexiform layer, mediated by amacrines which return, also isotropically, the translated retarded signals. Small though systematic deviations in the sites of the lateral interaction result in anisotropic but uniform receptive fields for some ganglion cells. A simple though general expressin for the model is derived which includes the various types of recorded avian ganglion retinal cells responses, which also permits a unified interpretation of visual processing in avian and cat's retinae.  相似文献   

12.
13.
Processing of spatio-temporal information in the human visual system has been investigated thoroughly during the past decade, but is still far from being properly understood. Moreover, the theory of separation of information by means of sustained and transient channels already at the retinal level is not satisfactory, as experimental results indicate that these two types of channels span a continuum of temporal characteristics. It is however obvious, that the process of pattern recognition and velocity perception calls for their separation at some level of the hierarchy. In this communication, we extend our model of three-dimensional spatio-temporal frequency expansion in the visual system (Gafni and Zeevi, 1977) to show how velocity-information extraction channels, sensitive to direction and velocity exclusively, can be formed by simple summation of signals from well-defined sets of channels representing points in the frequency space. Correspondence of these channels to characteristics of the cortical neurons is discussed.  相似文献   

14.
Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity.  相似文献   

15.
 Anatomical, neurophysiological, and neurochemical evidence supports the notion of parallel basal ganglia–thalamocortical motor systems. We developed a neural network model for the functioning of these systems during normal and parkinsonian movement. Parkinson’s disease (PD), which results predominantly from nigrostriatal pathway damage, is used as a window to examine basal ganglia function. Simulations of dopamine depletion produce motor impairments consistent with motor deficits observed in PD that suggest the basal ganglia play a role in motor initiation and execution, and sequencing of motor programs. Stereotaxic lesions in the model’s globus pallidus and subthalamic nucleus suggest that these lesions, although reducing some PD symptoms, may constrain the repertoire of available movements. It is proposed that paradoxical observations of basal ganglia responses reported in the literature may result from regional functional neuronal specialization, and the non-uniform distributions of neurochemicals in the basal ganglia. It is hypothesized that dopamine depletion produces smaller-than-normal pallidothalamic gating signals that prevent rescalability of these signals to control variable movement speed, and that in PD can produce smaller-than-normal movement amplitudes. Received: 1 September 1994/Accepted in revised form: 16 May 1995  相似文献   

16.
The role of the extracellular loop region of a short-wavelength sensitive pigment, Xenopus violet cone opsin, is investigated via computational modeling, mutagenesis, and spectroscopy. The computational models predict a complex H-bonding network that stabilizes and connects the EC2-EC3 loop and the N-terminus. Mutations that are predicted to disrupt the H-bonding network are shown to produce visual pigments that do not stably bind chromophore and exhibit properties of a misfolded protein. The potential role of a disulfide bond between two conserved Cys residues, Cys(105) in TM3 and Cys(182) in EC2, is necessary for proper folding and trafficking in VCOP. Lastly, certain residues in the EC2 loop are predicted to stabilize the formation of two antiparallel β-strands joined by a hairpin turn, which interact with the chromophore via H-bonding or van der Waals interactions. Mutations of conserved residues result in a decrease in the level of chromophore binding. These results demonstrate that the extracellular loops are crucial for the formation of this cone visual pigment. Moreover, there are significant differences in the structure and function of this region in VCOP compared to that in rhodopsin.  相似文献   

17.
In this article, we present a neurologically motivated computational architecture for visual information processing. The computational architecture’s focus lies in multiple strategies: hierarchical processing, parallel and concurrent processing, and modularity. The architecture is modular and expandable in both hardware and software, so that it can also cope with multisensory integrations – making it an ideal tool for validating and applying computational neuroscience models in real time under real-world conditions. We apply our architecture in real time to validate a long-standing biologically inspired visual object recognition model, HMAX. In this context, the overall aim is to supply a humanoid robot with the ability to perceive and understand its environment with a focus on the active aspect of real-time spatiotemporal visual processing. We show that our approach is capable of simulating information processing in the visual cortex in real time and that our entropy-adaptive modification of HMAX has a higher efficiency and classification performance than the standard model (up to \(\sim \!+6\,\% \) ).  相似文献   

18.
Multidrug resistance protein 1 (MRP1) is a human ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance to tumor cells by actively effluxing intracellular drugs. To examine the functional significance of intracellular loops (ICLs) in MRP1, we determined the effect of mutation of the amino acid sequence EXXXG, which is conserved in ICL5 and ICL7 of human MRP1, 2 and 3, sulfonylurea receptor (SUR) 1 and 2, and mouse MRP1 and 2. E and G in the ICLs of human MRP1 were mutated to L and P, respectively, and the N-terminal (including ICL5) and C-terminal (including ICL7) wild type or mutant halves of MRP1 were co-expressed in insect cells. The mutation of either ICL5 or ICL7 considerably decreased ATP-dependent LTC4 uptake into vesicles of insect cells expressing mutated MRP1. GSH-dependent photolabeling of MRP1 with an 125I-labeled photoaffinity analog of azido agosterol A (azido AG-A) was abolished by the mutations in ICL5 and ICL7. Mutations in ICL5 of MRP1 almost completely inhibited the labeling of NBD2, but not NBD1, by 8-azido-alpha-[32P]ATP. In contrast, mutations in ICL7 of MRP1 abolished the labeling of both NBDs. Mutation of either ICL5 or ICL7 of MRP1 almost completely inhibited vanadate trapping with 8-azido-alpha-[32P]ATP by both NBD1 and NBD2 domains. These findings indicate that the intramolecular signaling between NBD and ICLs in MRP1 is vital for MRP1 function.  相似文献   

19.
Phosphagen kinases catalyze the reversible transfer of a phosphate between ATP and guanidino substrates, a reaction that is central to cellular energy homeostasis. Members of this conserved family include creatine and arginine kinases and have similar reaction mechanisms, but they have distinct specificities for different guanidino substrates. There has not been a full structural rationalization of specificity, but two loops have been implicated repeatedly. A small domain loop is of length that complements the size of the guanidino substrate, and is located where it could mediate a lock-and-key mechanism. The second loop contacts the substrate with a valine in the methyl-substituted guanidinium of creatine, and with a glutamate in the unsubstituted arginine substrate, leading to the proposal of a discriminating hydrophobic/hydrophilic minipocket. In the present work, chimeric mutants were constructed with creatine kinase loop elements inserted into arginine kinase. Contrary to the prior rationalizations of specificity, most had measurable arginine kinase activity but no creatine kinase activity or enhanced phosphocreatine binding. Guided by structure, additional mutations were introduced in each loop, recovering arginine kinase activities as high as 15% and 64% of wild type, respectively, even though little activity would be expected in the constructs if the implicated sites had dominant roles in specificity. An atomic structure of the mismatched complex of arginine kinase with creatine and ADP indicates that specificity can also be mediated by an active site that allows substrate prealignment that is optimal for reactivity only with cognate substrates and not with close homologs that bind but do not react.  相似文献   

20.
DNA loop heterologies are products of normal DNA metabolism and can lead to severe genomic instability if unrepaired. To understand how human cells process DNA loop structures, a set of circular heteroduplexes containing a 30-nucleotide loop were constructed and tested for repair in vitro by human cell nuclear extracts. We demonstrate here that, in addition to the previously identified 5' nick-directed loop repair pathway (Littman, S. J., Fang, W. H., and Modrich, P. (1999) J. Biol. Chem. 274, 7474-7481), human cells can process large DNA loop heterologies in a loop-directed manner. The loop-directed repair specifically removes the loop structure and occurs only in the looped strand, and appears to require limited DNA synthesis. Like the nick-directed loop repair, the loop-directed repair is independent of many known DNA repair pathways, including DNA mismatch repair and nucleotide excision repair. In addition, our data also suggest that an aphidicolin-sensitive DNA polymerase is involved in the excision step of the nick-directed loop repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号