首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(2):160-162
Autophagy is a response to the stress of nutrient limitation in yeast, whereby cytosolic long-lived proteins and organelles are non-selectively degraded, and the resulting macromolecules are recycled to allow new protein synthesis that is essential for survival. We recently revealed that endoplasmic reticulum (ER) stress induces autophagy. When misfolded proteins accumulate in the ER the resulting stress activates the unfolded protein response (UPR) to induce the expression of chaperones and proteins involved in the recovery process. Under conditions of ER stress, the pre-autophagosomal structure is assembled, and transport of autophagosomes to the vacuole is stimulated in an Atg protein-dependent manner. Interestingly, Atg1 has high kinase activity during ER stress-induced autophagy similar to the situation in starvation-induced autophagy.

Addendum to:

Endoplasmic Reticulum Stress Triggers Autophagy

T. Yorimitsu, U. Nair, Z. Yang and D.J. Klionsky

J Biol Chem 2006; 281:30299-304  相似文献   

2.
Endoplasmic reticulum stress triggers autophagy   总被引:1,自引:0,他引:1  
Eukaryotic cells have evolved strategies to respond to stress conditions. For example, autophagy in yeast is primarily a response to the stress of nutrient limitation. Autophagy is a catabolic process for the degradation and recycling of cytosolic, long lived, or aggregated proteins and excess or defective organelles. In this study, we demonstrate a new pathway for the induction of autophagy. In the endoplasmic reticulum (ER), accumulation of misfolded proteins causes stress and activates the unfolded protein response to induce the expression of chaperones and proteins involved in the recovery process. ER stress stimulated the assembly of the pre-autophagosomal structure. In addition, autophagosome formation and transport to the vacuole were stimulated in an Atg protein-dependent manner. Finally, Atg1 kinase activity reflects both the nutritional status and autophagic state of the cell; starvation-induced autophagy results in increased Atg1 kinase activity. We found that Atg1 had high kinase activity during ER stress-induced autophagy. Together, these results indicate that ER stress can induce an autophagic response.  相似文献   

3.
The endoplasmic-reticulum quality-control (ERQC) system shuttles misfolded proteins for degradation by the proteasome through the well-defined ER-associated degradation (ERAD) pathway. In contrast, very little is known about the role of autophagy in ERQC. Macro-autophagy, a collection of pathways that deliver proteins through autophagosomes (APs) for degradation in the lysosome (vacuole in yeast), is mediated by autophagy-specific proteins, Atgs, and regulated by Ypt/Rab GTPases. Until recently, the term ER-phagy was used to describe degradation of ER membrane and proteins in the lysosome under stress: either ER stress induced by drugs or whole-cell stress induced by starvation. These two types of stresses induce micro-ER-phagy, which does not use autophagic organelles and machinery, and non-selective autophagy. Here, we characterize the macro-ER-phagy pathway and uncover its role in ERQC. This pathway delivers 20–50% of certain ER-resident membrane proteins to the vacuole and is further induced to >90% by overexpression of a single integral-membrane protein. Even though such overexpression in cells defective in macro-ER-phagy induces the unfolded-protein response (UPR), UPR is not needed for macro-ER-phagy. We show that macro-ER-phagy is dependent on Atgs and Ypt GTPases and its cargo passes through APs. Moreover, for the first time the role of Atg9, the only integral-membrane core Atg, is uncoupled from that of other core Atgs. Finally, three sequential steps of this pathway are delineated: Atg9-dependent exit from the ER en route to autophagy, Ypt1- and core Atgs-mediated pre-autophagsomal-structure organization, and Ypt51-mediated delivery of APs to the vacuole.  相似文献   

4.
5.
ABSTRACT

The endoplasmic reticulum (ER) is the largest membrane-bound organelle in eukaryotic cells and plays critical roles in diverse processes in metabolism, signaling and intracellular organization. In response to stress stimuli such as nutrient deprivation, accumulation of misfolded proteins or exposure to chemicals, the ER increases in size through upregulated synthesis of its components to counteract the stress. To restore physiological size, the excess ER components are continuously dismantled and degraded by reticulophagy, a form of autophagy that targets, via adaptor molecules called reticulophagy receptors, specific ER portions to the lysosome for degradation. Previous studies have identified several ER resident proteins as reticulophagy receptors. In a recent study, we identified CALCOCO1 as a soluble reticulophagy receptor for the degradation of tubular ER in response to proteotoxic and starvation-induced stress. On the ER membrane, CALCOCO1 interacts with VAPA and VAPB via a FFAT-like motif and recruits autophagy machinery by binding directly to Atg8-family proteins via LIR and UDS interacting region (UIR) motifs acting co-dependently. Depletion of CALCOCO1 in cultured cells led to an impaired ER degradation during stress.  相似文献   

6.
Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defence against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, Infectious Bronchitis Virus (IBV) activates autophagy. A screen of individual IBV non-structural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses Mouse Hepatitis Virus, and Severe Acute Respiratory Syndrome Virus, and the equivalent nsp5-7 of the arterivirus Porcine Reproductive and Respiratory Syndrome Virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II-positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double FYVE-domain containing protein (DFCP) indicating localised concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signalling, activation of sirtuin1 or induction of ER stress.  相似文献   

7.
《Autophagy》2013,9(11):1335-1347
Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defence against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, Infectious Bronchitis Virus (IBV) activates autophagy. A screen of individual IBV non-structural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses Mouse Hepatitis Virus, and Severe Acute Respiratory Syndrome Virus, and the equivalent nsp5-7 of the arterivirus Porcine Reproductive and Respiratory Syndrome Virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II-positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double FYVE-domain containing protein (DFCP) indicating localised concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signalling, activation of sirtuin1 or induction of ER stress.  相似文献   

8.
Damage to endoplasmic reticulum (ER) homeostasis that cannot be corrected by the unfolded protein response activates cell death. Here, we identified death-associated protein kinase (DAPk) as an important component in the ER stress-induced cell death pathway. DAPk-/- mice are protected from kidney damage caused by injection of the ER stress-inducer tunicamycin. Likewise, the cell death response to ER stress-inducers is reduced in DAPk-/- primary fibroblasts. Both caspase activation and autophagy induction, events that are activated by ER stress and precede cell death, are significantly attenuated in the DAPk null cells. Notably, in this cellular setting, autophagy serves as a second cell killing mechanism that acts in concert with apoptosis, as the depletion of Atg5 or Beclin1 from fibroblasts significantly protected from ER stress-induced death when combined with caspase-3 depletion. We further show that ER stress promotes the catalytic activity of DAPk by causing dephosphorylation of an inhibitory autophosphorylation on Ser(308) by a PP2A-like phosphatase. Thus, DAPk constitutes a critical integration point in ER stress signaling, transmitting these signals into two distinct directions, caspase activation and autophagy, leading to cell death.  相似文献   

9.
BACKGROUND: To survive starvation and other forms of stress, eukaryotic cells undergo a lysosomal process of cytoplasmic degradation known as autophagy. Autophagy has been implicated in a number of cellular and developmental processes, including cell-growth control and programmed cell death. However, direct evidence of a causal role for autophagy in these processes is lacking, resulting in part from the pleiotropic effects of signaling molecules such as TOR that regulate autophagy. Here, we circumvent this difficulty by directly manipulating autophagy rates in Drosophila through the autophagy-specific protein kinase Atg1. RESULTS: We find that overexpression of Atg1 is sufficient to induce high levels of autophagy, the first such demonstration among wild-type Atg proteins. In contrast to findings in yeast, induction of autophagy by Atg1 is dependent on its kinase activity. We find that cells with high levels of Atg1-induced autophagy are rapidly eliminated, demonstrating that autophagy is capable of inducing cell death. However, this cell death is caspase dependent and displays DNA fragmentation, suggesting that autophagy represents an alternative induction of apoptosis, rather than a distinct form of cell death. In addition, we demonstrate that Atg1-induced autophagy strongly inhibits cell growth and that Atg1 mutant cells have a relative growth advantage under conditions of reduced TOR signaling. Finally, we show that Atg1 expression results in negative feedback on the activity of TOR itself. CONCLUSIONS: Our results reveal a central role for Atg1 in mounting a coordinated autophagic response and demonstrate that autophagy has the capacity to induce cell death. Furthermore, this work identifies autophagy as a critical mechanism by which inhibition of TOR signaling leads to reduced cell growth.  相似文献   

10.
Most secretory proteins are folded and modified in the endoplasmic reticulum (ER); however, protein folding is error-prone, resulting in toxic protein aggregation and cause ER stress. Irreversibly misfolded proteins are subjected to ER-associated degradation (ERAD), modified by ubiquitination, and degraded by the 26S proteasome. The yeast ERAD ubiquitin ligase Hrd1p and multispanning membrane protein Der1p are involved in ubiquitination and transportation of the folding-defective proteins. Here, we performed functional characterization of MoHrd1 and MoDer1 and revealed that both of them are localized to the ER and are pivotal for ERAD substrate degradation and the ER stress response. MoHrd1 and MoDer1 are involved in hyphal growth, asexual reproduction, infection-related morphogenesis, protein secretion and pathogenicity of M. oryzae. Importantly, MoHrd1 and MoDer1 mediated conidial autophagic cell death and subsequent septin ring assembly at the appressorium pore, leading to abnormal appressorium development and loss of pathogenicity. In addition, deletion of MoHrd1 and MoDer1 activated the basal unfolded protein response (UPR) and autophagy, suggesting that crosstalk between ERAD and two other closely related mechanisms in ER quality control system (UPR and autophagy) governs the ER stress response. Our study indicates the importance of ERAD function in fungal development and pathogenesis of M. oryzae.  相似文献   

11.
The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.  相似文献   

12.
13.
Autophagy, a predominantly cytoprotective process, is an important regulator in diabetic metabolism and endoplasmic reticulum (ER) stress responses. However, the interaction and biological significance between autophagic imbalance and ER stress involved in insulin resistance remain not fully elucidated. In the present study, when compared with normal glucose tolerance (NGT) subjects, enhanced ER stress and pronounced protein and mRNA levels of the autophagic genes such as Atg7, LC3A, and LC3B were evident in adipose tissue of patients with type 2 diabetes. An increased number of autophagosomes and elevated autophagy flux in adipose explants incubated with lysomoal inhibitor were also observed in type 2 diabetes. In addition, adipocytes differentiation was significantly repressed by exogenous ER stress and defective autophagy in vitro. Tunicamycin-induced ER stress in adipocytes can trigger autophagic response and insulin insensitivity that was partially attributed to the upregulation of IRE1-JNK pathway, whereas autophagy deficiency resulted in ER stress and impaired insulin signaling, further supporting the crucial roles of autophagy in ER stress and insulin resistance. Moreover, disturbance of autophagy and insulin sensitivity induced by tunicamycin can be effectively corrected by the addition of osteocalcin in an NFκB-dependent manner in vitro. In conclusion, our results demonstrated a reciprocal functional interaction among autophagy, ER stress, and insulin signaling in adipose tissue of type 2 diabetes and adipocytes, supporting an adaptive role of autophagy-dependent mechanism in response to ER stress-induced insulin resistance in type 2 diabetes.  相似文献   

14.
While many of the proteins required for autophagy have been identified, the source of the membrane of the autophagosome is still unresolved with the endoplasmic reticulum (ER), endosomes, and mitochondria all having been evoked. The integral membrane protein Atg9 is delivered to the autophagosome during starvation and in the related cytoplasm-to-vacuole (Cvt) pathway that occurs constitutively in yeast. We have examined the requirements for delivery of Atg9-containing membrane to the yeast autophagosome. Atg9 does not appear to originate from mitochondria, and Atg9 cannot reach the forming autophagosome directly from the ER or early Golgi. Components of traffic between Golgi and endosomes are known to be required for the Cvt pathway but do not appear required for autophagy in starved cells. However, we find that pairwise combinations of mutations in Golgi-endosomal traffic components apparently only required for the Cvt pathway can cause profound defects in Atg9 delivery and autophagy in starved cells. Thus it appears that membrane that contains Atg9 is delivered to the autophagosome from the Golgi-endosomal system rather than from the ER or mitochondria. This is underestimated by examination of single mutants, providing a possible explanation for discrepancies between yeast and mammalian studies on Atg9 localization and autophagosome formation.  相似文献   

15.
《Autophagy》2013,9(8):1203-1205
Degradation of mitochondria is a fundamental process conserved from yeast to humans that utilizes the machinery of autophagy. In contrast to starvation-induced, nonselective autophagy responsible for nutrient recycling, selective autophagy, which involves particular cues and receptors required for induction and cargo recognition, respectively, mediates mitochondria-specific breakdown. Although numerous studies highlight that mitochondria autophagy (mitophagy) contributes to homeostatic control of mitochondria, the molecular mechanisms underlying this selective clearance process are poorly understood. Using a genome-wide visual screen, we identified Atg32, a protein essential for mitophagy in budding yeast. During respiratory growth, Atg32 is highly expressed, likely in response to oxidative stress, and anchored on the surface of mitochondria. We also demonstrate that Atg32 interacts with Atg8 and Atg11, proteins critical for recognition of cargo receptors. Notably, Atg32 contains WXXI/L/V, a conserved motif that serves as a binding site for the Atg8 family members. Our recent findings suggest that Atg32 is a transmembrane receptor that directs autophagosome formation to mitochondria.  相似文献   

16.
17.
Autophagy is a highly conserved process primarily known for its role in cellular adaptation to nutritional stress. This bulk protein degradation pathway relocates nutrients during starvation. Recent studies, however, have revealed essential roles of autophagy in various organs under normal conditions. Especially, autophagy is now recognized as the pathway responsible for the elimination of damaged proteins resulting from environmental stress. Lungs are constantly exposed to high oxygen tension and environmental chemicals. To investigate the importance of autophagy in lung physiology, we used an inducible system to ablate Atg7 expression, which is a protein essential for autophagy, in the respiratory epithelial cells of adult mice. We found that Atg7 deficiency caused swelling of bronchiolar epithelial cells and accumulation of p62, which links substrate proteins to the autophagy machinery. Bronchiolar epithelial cells, isolated by micro-dissection of lung tissues, had elevated expression of cytoprotective genes that are typically activated by Nrf2. Interestingly, Atg7-deficient lungs displayed hyper-responsiveness to cholinergic stimuli without apparent inflammatory signs. Swollen bronchiolar epithelial cells may have lead to mechanical airway constriction and lowered the threshold for the increase of airway resistance. This study demonstrates the critical role of autophagy in the lungs for the maintenance of pulmonary homeostasis.  相似文献   

18.
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.  相似文献   

19.
《Autophagy》2013,9(6):841-843
The endoplasmic reticulum (ER) is the primary site for folding and quality control for proteins destined to the cell surface and intracellular organelles. A variety of cellular insults alter ER homeostasis to disrupt protein folding, cause the accumulation of misfolded protein and activate an autophagic response. However, the molecular signaling pathways required for ER stress-induced autophagy are largely unknown. Recently, we discovered that a novel-type protein kinase C family member (PKCθ) is required for ER stress-induced autophagy. We shown that ER stress, in a Ca2+-dependent manner, induces PKCθ phosphorylation within the activation loop and localization with LC3-II in punctate cytoplasmic structures. Pharmacological inhibition, siRNA-mediated knockdown, or transdominant-negative mutant expression of PKCθ block the ER stress-induced autophagic response. PKCθ activation is not required for autophagy induced by amino acid starvation, and PKCθ activation in response to ER stress does not require either the mTOR kinase or the unfolded protein response signaling pathways. Herein, we review and discuss the significance of these findings with respect to regulation of autophagy in response to ER stress.

Addendum to: Sakaki K, Wu J, Kaufman RJ. Protein kinase C-θ is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 2008; 283:15370-80.  相似文献   

20.
Autophagy is a conserved degradative pathway that is induced in response to various stress and developmental conditions in eukaryotic cells. It allows the elimination of cytosolic proteins and organelles in the lysosome/vacuole. In the yeast Saccharomyces cerevisiae, the integral membrane protein Atg9 (autophagy-related protein 9) cycles between mitochondria and the preautophagosomal structure (PAS), the nucleating site for formation of the sequestering vesicle, suggesting a role in supplying membrane for vesicle formation and/or expansion during autophagy. To better understand the mechanisms involved in Atg9 cycling, we performed a yeast two-hybrid-based screen and identified a peripheral membrane protein, Atg11, that interacts with Atg9. We show that Atg11 governs Atg9 cycling through the PAS during specific autophagy. We also demonstrate that the integrity of the actin cytoskeleton is essential for correct targeting of Atg11 to the PAS. We propose that a pool of Atg11 mediates the anterograde transport of Atg9 to the PAS that is dependent on the actin cytoskeleton during yeast vegetative growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号