首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Biosurfactants     
Abstract

Lipids are known as a part of an effective adaptation mechanism reflecting the changes in the extracellular environment. The fluidity of biological membranes is influenced by the lipid structure and the portion of saturated, unsaturated, branched, or cyclic fatty acids in individual phospholipids. For all living organisms undergoing environmental adaptation, the fluidity can be changed only to a relatively small extent. This range is genetically determined and it is specific for every microorganism. This article presents recent knowledge about the influence of some environmental parameters (temperature, osmotic pressure, pH, the presence of salt or ethanol in medium) on a microbial membrane with the emphasis on regulation aspect in fatty acid biosynthesis. The main tools for regulation of membrane fluidity, for example, fatty acid desaturation or incorporation of branched and cyclic fatty acids into phospholipids, are discussed in more detail.  相似文献   

3.
4.
Biosurfactants are surface‐active biomolecules that are produced by various micro‐organisms. They show unique properties i.e. lower toxicity, higher biodegradability and environmental compatibility compared to their chemical counterparts. Glycolipids and lipopeptides have prompted application in biotechnology and cosmetics due to their multi‐functional profile i.e. detergency, emulsifying, foaming and skin hydrating properties. Additionally, some of them can be served as antimicrobials. In this study the current status of research and development on rhamnolipids, sophorolipids, mannosyloerythritol lipids, trehalipids, xylolipids and lipopeptides particularly their commercial application in cosmetics and biopharmaceuticals, is described.  相似文献   

5.
生物表面活性剂及其应用   总被引:11,自引:0,他引:11  
生物表面活性剂 (biosurfactant)是表面活性剂家族中的后起之秀 ,它是由微生物所产生的一类具有表面活性作用的物质。它具有减小表面张力、稳定乳化作用、增加泡沫等作用。它的表面活性作用以及对热、p H的稳定性均与化学合成的表面活性剂相当。但它具有一般的化学合成表面活性剂所无法篦美的优点——与环境的兼容性 ,即它没有毒性 ,并可被生物降解 ,因此它们不会对环境造成不利的影响。随着环保意识的不断增强 ,生物表面活性剂正愈来愈受到人们的关注。1 生物表面活性剂的结构特点生物表面活性剂通常是由微生物产生的 ,且多数是由细菌和…  相似文献   

6.
Biosurfactants and oil bioremediation   总被引:31,自引:0,他引:31  
Oil pollution is an environmental problem of increasing importance. Hydrocarbon-degrading microorganisms, adapted to grow and thrive in oil-containing environments, have an important role in the biological treatment of this pollution. One of the limiting factors in this process is the bioavailability of many fractions of the oil. The hydrocarbon-degrading microorganisms produce biosurfactants of diverse chemical nature and molecular size. These surface-active materials increase the surface area of hydrophobic water-insoluble substrates and increase their bioavailability, thereby enhancing the growth of bacteria and the rate of bioremediation.  相似文献   

7.
生物表面活性剂及其应用   总被引:15,自引:0,他引:15  
生物表面活性剂主要是由微生物产生的一种生物在分子物质,具有或优于化学合成表面活性剂的理化特性,作为一种绿色天然产物。极有可能取代化学合成表面活性剂,其应用前景十分广阔。本文阔述了生物表面活性剂的特点,种类,着重介绍它的潜在应用。  相似文献   

8.
生物表面活性剂对微生物生长和代谢的影响   总被引:20,自引:1,他引:19  
综述了生物表面活性剂在微生物生长和代谢过程中的影响。根据其分子结构特征 ,系统分析了生物表面活性剂通过与难溶底物和微生物细胞之间的相互作用促进烷烃摄取的机理 ,利用该机理可以合理解释生理现象。生物表面活性剂还在参与细胞代谢活动的过程中发挥特殊功能。  相似文献   

9.
脂肽类生物表面活性剂的研究进展   总被引:12,自引:2,他引:12  
脂肽是由微生物代谢产生的一类具有很强表面活性的生物表面活性剂 ,在医药、食品、化妆品和微生物采油等方面有良好的应用潜力。本文对脂肽的生产、分离、鉴定及应用方面进行了综述  相似文献   

10.
生物表面活性剂及其应用   总被引:24,自引:0,他引:24  
生物表面活性剂是由微生物产生的一类具有表面活性的生物化合物,除具有化学合成表面活性剂的理化特性外,还具有无毒、能生物降解等优点,其应用前景非常广阔,并有可能成为化学合成表面活性剂的替代品或升级换代品。简述了生物表面活性剂的历史、特性、种类及应用研究进展 。  相似文献   

11.
Biosurfactants and aqueous two-phase fermentation   总被引:3,自引:0,他引:3  
The partition of surfactants and a biosurfactant-producing microorganism was studied in polyethylene glycol and dextran aqueous two-phase systems. In the presence of sodium phosphate, surfactants distributed themselves according to charge. Cationic surfactants preferred the bottom phase, while anionic surfactants were attracted to the top phase. Incresing the phosphate molarity or the pH resulted in a more 1-sided surfactant partitioning. Biosurfactant partitioning was weaker than synthetic surfactant partitioning due to the weaker effective charge and lack to strong specific affinity for any of the phase-forming polymers. Bacillus Subtilis cells partitioned very storngly to the bottom phase. The bioscurfactant, surfactin, produced by this microorganism partitioned to the top phase. Batch fermentations were carried out in an aqueous 2-phase system. Surfactin was produced in larger quanities in the 2-phase fermentation than in the regular mineral salts medium.  相似文献   

12.
Cosmetic products play an essential role in everyone’s life. People everyday use a large variety of cosmetic products such as soap, shampoo, toothpaste, deodorant, skin care, perfume, make-up, among others. The cosmetic industry encompasses several environmental, social and economic impacts that are being addressed through the search for more efficient manufacturing techniques, the reduction of waste and emissions and the promotion of personal hygiene, contributing to an improvement of public health and at the same time providing employment opportunities. The current trend among consumers is the pursuit for natural ingredients in cosmetic products, as many of these products exhibit equal, better or additional benefits in comparison with the chemical-based products. In this sense, biosurfactants are natural compounds with great potential in the formulation of cosmetic products given by their biodegradability and impact in health. Indeed, many of these biosurfactants could exhibit a “prebiotic” character. This review covers the current state-of-the-art of biosurfactant research for cosmetic purposes and further discusses the future challenges for cosmetic applications.  相似文献   

13.
14.
The high-level production of rhamnolipid biosurfactants is a unique feature of Pseudomonas aeruginosa and is strictly regulated in response to environmental conditions. The final step in rhamnolipid biosynthesis is catalyzed by the rhlAB genes encoding a rhamnosyltransferase. The expression of the cloned rhlAB genes was studied in heterologous hosts, either under the control of the rhlR and rhlI rhamnolipid regulatory elements or under the control of the tac promoter. A recombinant P. fluorescens strain harboring multiple plasmid-encoded copies of the rhamnolipid gene cluster produced rhamnolipids (0.25 g liter(sup-1)) when grown under nitrogen-limiting conditions. The highest yields (0.6 g liter(sup-1)) and productivities (24 mg liter(sup-1) h(sup-1)) were obtained in a recombinant Pseudomonas putida strain, KT2442, harboring promoterless rhlAB genes fused to the tac promoter on a plasmid. Active rhamnosyltransferase was synthesized, but no rhamnolipids were produced, by recombinant Escherichia coli upon induction of rhlAB gene expression.  相似文献   

15.
Biosurfactants: moving towards industrial application.   总被引:2,自引:0,他引:2  
Chemically synthesized surface-active compounds are widely used in the pharmaceutical, cosmetic, petroleum and food industries. However, with the advantages of biodegradability, and production on renewable-resource substrates, biosurfactants may eventually replace their chemically synthesized counterparts. So far, the use of biosurfactants has been limited to a few specialized applications because biosurfactants have been economically uncompetitive. There is a need to gain a greater understanding of the physiology, genetics and biochemistry of biosurfactant-producing strains, and to improve process technology to reduce production costs.  相似文献   

16.
International Journal of Peptide Research and Therapeutics - Biosurfactants are natural compounds produced biologically by certain bacterial strains. They are promising alternatives in several...  相似文献   

17.
There has been considerable interest in the use of biosurfactants due to the diversity of structures and the possibility of production from a variety of substrates. The potential for industrial applications has been growing, as these natural compounds are tolerant to common processing methods and can compete with synthetic surfactants with regards to the capacity to reduce surface and interfacial tensions as well as stabilise emulsions while offering the advantages of biodegradability and low toxicity. Among biosurfactant-producing microorganisms, some yeasts present no risks of toxicity or pathogenicity, making them ideal for use in food formulations. Indeed, the use of these biomolecules in foods has attracted industrial interest due to their properties as emulsifiers and stabilizers of emulsions. Studies have also demonstrated other valuable properties, such as antioxidant and antimicrobial activity, enabling the aggregation of greater value to products and the avoidance of contamination both during and after processing. All these characteristics allow biosurfactants to be used as additives and versatile ingredients for the processing of foods. The present review discusses the potential application of biosurfactants as emulsifying agents in food formulations, such as salad dressing, bread, cakes, cookies, and ice cream. The antioxidant, antimicrobial and anti-adhesive properties of these biomolecules are also discussed, demonstrating the need for further studies to make the use of the natural compounds viable in this expanding sector.  相似文献   

18.
Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.  相似文献   

19.
微生物产生的生物表面活性剂及其应用研究   总被引:19,自引:1,他引:19  
对生物表面活性剂的类型及其产生微生物,生物表面活性剂的生产和生物表面活性剂在石油开采、食品工业、农业、药品和化妆品以及环境保护等领域的潜在应用价值作了介绍,展现出了生物表面活性剂的广阔应用前景。  相似文献   

20.
The fermentative production of biosurfactants by five Bacillus strains in a bench-scale bioreactor and evaluation of biosurfactant-based enhanced oil recovery using sand pack columns were investigated. Adjusting the initial dissolved oxygen to 100% saturation, without any further control and with collection of foam and recycling of biomass, gave higher biosurfactant production. The microorganisms were able to produce biosurfactants, thus reducing the surface tension and interfacial tension to 28 mN/m and 5.8–0.5 mN/m, respectively, in less than 10 hours. The crude surfactant concentration of 0.08–1.1 g/L, and critical micelle concentration (CMC) values of 19.4–39 mg/L, corresponding to the biosurfactants produced by the different Bacillus strains, were observed. The efficiency of crude biosurfactant preparation obtained from Bacillus strains for enhanced oil recovery, by sand pack column studies, revealed it to vary from 30.22–34.19% of the water flood residual oil saturation. The results are indicative of the potential of the strains for the development of ex-situ, microbial-enhanced, oil recovery processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号