首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steiner UK 《Oecologia》2007,152(2):201-210
An organism’s investment in different traits to reduce predation is determined by the fitness benefit of the defense relative to the fitness costs associated with the allocation of time and resources to the defense. Inherent tradeoffs in time and resource allocation should result in differential investment in defense along a resource gradient, but competing models predict different patterns of investment. There are currently insufficient empirical data on changes in investment in defensive traits or their costs along resource gradients to differentiate between the competing allocation models. In this study, I exposed tadpoles to caged predators along a resource gradient in order to estimate investment in defense and costs of defense by assessing predator-induced plasticity. Induced defenses included increased tail depth, reduced feeding, and reduced swimming activity; costs associated with these defenses were reduced developmental rate, reduced growth, and reduced survival. At low resource availability, these costs predominately resulted in reduced survival, while at high resource availability the costs yielded a reduced developmental rate. Defensive traits responded strongly to predation risk, but did not respond to resource availability (with the exception of feeding activity), whereas traits construed as costs of defenses showed the opposite pattern. Therefore, defensive traits were highly sensitive to predation risk, while traits construed as costs of defense were highly sensitive to resource allocation tradeoffs. This difference in sensitivity between the two groups of traits may explain why the correlation between the expression of defensive traits and the expression of the associated defense costs was weak. Furthermore, my results indicate that genetic linkages and mechanistic integration of multiple defensive traits and their associated costs may constrain time and resource allocation in ways that are not addressed in existing models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Different structures may compete during development for a shared and limited pool of resources to sustain growth and differentiation. The resulting resource allocation trade-offs have the potential to alter both ontogenetic outcomes and evolutionary trajectories. However, little is known about the evolutionary causes and consequences of resource allocation trade-offs in natural populations. Here, we explore the significance of resource allocation trade-offs between primary and secondary sexual traits in shaping early morphological divergences between four recently separated populations of the horned beetle Onthophagus taurus as well as macroevolutionary divergence patterns across 10 Onthophagus species. We show that resource allocation trade-offs leave a strong signature in morphological divergence patterns both within and between species. Furthermore, our results suggest that genital divergence may, under certain circumstances, occur as a byproduct of evolutionary changes in secondary sexual traits. Given the importance of copulatory organ morphology for reproductive isolation our findings begin to raise the possibility that secondary sexual trait evolution may promote speciation as a byproduct. We discuss the implications of our results on the causes and consequences of resource allocation trade-offs in insects.  相似文献   

3.
In species that produce broods of multiple offspring, parents need to partition resources among simultaneously growing neonates that often differ in growth requirements. In birds, multiple ovarian follicles develop inside the female at the same time, resulting in a trade-off of resources among them and potentially limiting maternal ability for sex-specific allocation. We compared resource acquisition among oocytes in relation to their future sex and ovulation order in two populations of house finches with contrasting sex-biased maternal strategies. In a native Arizona population, where mothers do not bias offspring sex in relation to ovulation order, the male and female oocytes did not show sex-specific trade-offs of resources during growth and there was no evidence for spatial or temporal segregation of male and female oocytes in the ovary. In contrast, in a recently established Montana population where mothers strongly bias offspring sex in relation to ovulation order, we found evidence for both intra-sexual trade-offs among male and female oocytes and sex-specific clustering of oocytes in the ovary. We discuss the importance of sex-specific resource competition among offspring for the evolution of sex-ratio adjustment and sex-specific maternal resource allocation.  相似文献   

4.
On the basis of physiological and ecological costs of defense allocation, most plant defense theories predict the occurrence of trade-offs between resource investment in different types of antiherbivore defenses. To test this prediction, we conducted a meta-analysis of 31 studies published in 1976-2002 that provided data on covariation of different defensive traits in plant genotypes. We found no overall negative association between different defensive traits in plants; instead, the relationship between defensive traits varied from positive to negative depending on the types of co-occurring defenses. Evidence of trade-off was found only between constitutive and induced defenses. Therefore, to a large extent, plants appear to be jacks-of-all-trades, masters of all and may successfully produce several types of defense without paying considerable trade-offs. Our survey thus provides little evidence that genetic trade-offs between defensive traits significantly constrain the evolution of multiple defenses in plants.  相似文献   

5.
Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.  相似文献   

6.
Summary Using a two-loci multiplicative model of resource allocation, we show how the existence of several levels of resource allocation may affect the sign of the genetic correlations between traits linked by trade-offs. Positive genetic correlations between components of fitness affected by genetic trade-offs may result from different amounts of genetic variability at the pleiotropic loci determining the allocation of resources. Thus positive genetic correlations may be obtained in the absence both of environmental variation and of differences between individuals in resource acquisition. Nevertheless, positive correlations between all components of fitness at the same time cannot be obtained without variability in the acquisition of resources.  相似文献   

7.
Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative-genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade-offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade-offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade-offs. Thus, allocation hierarchies can profoundly affect life-history evolution by causing traits to evolve in the opposite direction to that predicted by trade-offs.  相似文献   

8.
David W. Kikuchi  William L. Allen  Kevin Arbuckle  Thomas G. Aubier  Emmanuelle S. Briolat  Emily R. Burdfield-Steel  Karen L. Cheney  Klára Daňková  Marianne Elias  Liisa Hämäläinen  Marie E. Herberstein  Thomas J. Hossie  Mathieu Joron  Krushnamegh Kunte  Brian C. Leavell  Carita Lindstedt  Ugo Lorioux-Chevalier  Melanie McClure  Callum F. McLellan  Iliana Medina  Viraj Nawge  Erika Páez  Arka Pal  Stano Pekár  Olivier Penacchio  Jan Raška  Tom Reader  Bibiana Rojas  Katja H. Rönkä  Daniela C. Rößler  Candy Rowe  Hannah M. Rowland  Arlety Roy  Kaitlin A. Schaal  Thomas N. Sherratt  John Skelhorn  Hannah R. Smart  Ted Stankowich  Amanda M. Stefan  Kyle Summers  Christopher H. Taylor  Rose Thorogood  Kate Umbers  Anne E. Winters  Justin Yeager  Alice Exnerová 《Journal of evolutionary biology》2023,36(7):975-991
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such “defence portfolios” that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.  相似文献   

9.
Prey can invest in a variety of defensive traits when balancing risk of predation against that of starvation. What remains unknown is the relative costs of different defensive traits and how prey reconcile investment into these traits when energetically limited. We tested the simple allocation model of prey defense, which predicts an additive effect of increasing predation risk and resource availability, resulting in the full deployment of defensive traits under conditions of high risk and resource saturation. We collected morphometric, developmental, and behavioural data in an experiment using dragonfly larvae (predator) and Northern leopard frog tadpoles (prey) subject to variable levels of food availability and predation risk. Larvae exposed to food restriction showed limited response to predation risk; larvae at food saturation altered behaviour, development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may affect the deployment of particular defensive traits. The observed negative correlation between body size and activity level for food-restricted prey – and the absence of a similar response among adequately-fed prey – suggests that a trade-off exists between behavioural and growth responses when energy budgets are limited. Our research is the first to demonstrate how investment into these defensive traits is mediated along gradients of both predation risk and resource availability over time. The interactions we demonstrate between resource availability and risk level on deployment of inducible defenses provide evidence that both internal condition and extrinsic risk factors play a critical role in the production of inducible defenses over time.  相似文献   

10.
The territorial defense hypothesis and the ecology of insular vertebrates   总被引:2,自引:0,他引:2  
Insular lizards, birds, and mammals in high-density populations often exhibit reduced situation-specific aggression toward conspecifics. This aggressive behavior can be expressed in the form of (1) reduced territory sizes, (2) increased territory overlap with neighbors, (3) acceptance of subordinates on the territory, (4) reduced aggressiveness to certain classes of conspecifics, or (5) abandonment of territorial defense. These behavioral traits can be explained by two nonexclusive hypotheses. The resource hypothesis suggests that territorial behavior is primarily adjusted to resource densities, and that resources are more abundant on islands than on the mainland (e.g., because of a lack of competing species). The defense hypothesis suggests that, in addition to any effects of resources, the costs of defense against both territorial intruders and contenders for vacant territories are higher on islands. Recent theoretical and empirical studies indicate that these behavioral changes can occur as a result of elevated defense costs, independent of resource densities. Reduced predation, more benign climates, and an absence of habitat sinks on islands would all tend to increase the density of potential intruders and contenders, and hence the costs of defense for owners of insular territories. The two hypotheses differ in their predictions about the rates of biomass production (growth or reproduction) for holders of insular territories. Reproductive and growth data from insular-mainland pairs indicate the importance of elevated defense costs, and also suggest that many insular vertebrates reallocate their breeding resources so as to produce young that are more competitive. The suite of ecological and behavioral traits exhibited by insular territorial vertebrates can best be explained by three factors operating in concert: higher available resource densities, higher defense costs, and (sometimes) a reallocation of resources to produce young that are more competitive.  相似文献   

11.
A major challenge in biology is understanding how organisms partition limited resources among physiological processes. For example, offspring production and self-maintenance are important for fitness and survival, yet these critical processes often compete for resources. While physiological trade-offs between reproduction and immune function have been documented, their regulation remains unclear. Most current evidence suggests that physiological changes during specific reproductive states directly suppress various components of the immune system; however, some studies have not found this clear relationship. We performed two experiments in female tree lizards (Urosaurus ornatus) that demonstrate the presence of trade-offs between the reproductive and immune systems under controlled laboratory conditions. These results also support the hypothesis that these trade-offs are a facultative response to resource availability and are not obligatory responses to physiological changes during reproduction. We found that (1) experimentally increasing reproductive investment under limited resources resulted in suppressed immune function and (2) experimentally limiting resources resulted in immunosuppression but only during resource costly reproductive activities. There seems to be a critical balance of resources that is maintained between multiple processes, and changes in the balance between energy intake and output can have major consequences for immune function.  相似文献   

12.
Evolutionary biologists explain the maintenance of intermediate levels of defense in plant populations as being due to trade-offs, or negative genetic covariances among ecologically important traits. Attempts at detecting trade-offs as constraints on the evolution of defense have not always been successful, leading some to conclude that such trade-offs rarely explain current levels of defense in the population. Using the agricultural pest Ipomoea purpurea, we measured correlations between traits involved in defense to glyphosate, the active ingredient in Roundup, a widely used herbicide. We found significant allocation costs of tolerance, as well as trade-offs between resistance and two measures of tolerance to glyphosate. Selection on resistance and tolerance exhibited differing patterns: tolerance to leaf damage was under negative directional selection, whereas resistance was under positive directional selection. The joint pattern of selection on resistance and tolerance to leaf damage indicated the presence of alternate peaks in the fitness landscape such that a combination of either high tolerance and low resistance, or high resistance and low tolerance was favored. The widespread use of this herbicide suggests that it is likely an important selective agent on weed populations. Understanding the evolutionary dynamics of herbicide defense traits is thus of increasing importance in the context of human-mediated evolution.  相似文献   

13.
Resource allocation trade-offs during development affect the final sizes of adult structures and have the potential to constrain the types and magnitude of evolutionary change that developmental processes can accommodate. Such trade-offs can arise when two or more body parts compete for a limited pool of resources to sustain their growth and differentiation. Recent studies on several holometabolous insects suggest that resource allocation trade-offs may be most pronounced in tissues that grow physically close to each other. Here we examine the nature and magnitude of developmental trade-offs between two very distant body parts: head horns and genitalia of males of the horned scarab beetle Onthophagus taurus. Both structures develop from imaginal disklike tissues that undergo explosive growth during late larval development but differ in exactly when they initiate their growth. We experimentally ablated the precursor cells that normally give rise to male genitalia at several time points during late larval development and examined the degree of horn development in these males compared to that of untreated and sham-operated control males. We found that experimental males developed disproportionately larger horns. Horn overexpression was weakest in response to early ablation and most pronounced in males whose genital disks were ablated just before larvae entered the prepupal stage. Our results suggest that even distant body parts may rely on a common resource pool to sustain their growth and that the relative timing of growth may play an important role in determining whether, and how severely, growing organs will affect each other during development. We use our findings to discuss the physiological causes and evolutionary consequences of resource allocation trade-offs.  相似文献   

14.
Age at maturation is a key life history trait influencing individual fitness, population age structure, and ecological interactions. We investigated the evolution of age at maturity through changes in the von Bertalanffy growth constant for organisms with a simple juvenile-adult life history. We used Gillespie eco-evolutionary models to uncover the role of predation in driving the evolution of the growth constant when eco-evolutionary dynamics are present. We incorporated both size-independent and size-dependent predation into our models to generate differences in selection and dynamics in the system. Our results generally support the idea that faster ontogenetic growth is beneficial when populations are growing but that predation tends to have little effect on age at maturity unless there are trade-offs with other life history traits. In particular, if faster ontogenetic growth comes at the cost of fecundity, our results suggest that predation selects for intermediate levels of growth and fecundity. Eco-evolutionary dynamics influenced the nature of selection only when growth was linked to fecundity. We also found that predators that increasingly consume larger prey tend to have higher population sizes due to the greater energy intake from larger prey, but the growth rate-fecundity trade-off reversed this pattern. Overall, our results suggest an important role for interactions between size-dependent foraging and life-history trade-offs in generating varying selection on age at maturity through underlying growth traits.  相似文献   

15.
Understanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle, Nicrophorus vespilloides. Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource. Thus, testing gene expression during parental care allows us to test expectations of this “precursor hypothesis” for multiple genes and traits. We tested for changes of the expression of serotonin, octopamine/tyramine, and dopamine receptors, as well as one glutamate receptor, predicting that these gene families would be differentially expressed during social interactions with offspring and associated resource defense. We found that serotonin receptors were strongly associated with social and aggression behavioral transitions. Octopamine receptors produced a complex picture of gene expression over a reproductive cycle. Dopamine was not associated with the behavioral transitions sampled here, while the glutamate receptor was most consistent with a behavioral change of resource defense/aggression. Our results generate new hypotheses, refine candidate lists for further studies, and inform the genetic mechanisms that are co‐opted during the evolution of parent–offspring interactions, a likely evolutionary path for many lineages that become fully social. The precursor hypothesis, while not perfect, does provide a starting point for identifying candidate genes.  相似文献   

16.
The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource‐level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator‐induced morphological defense in fish to study the interaction between predator cues, resource availability, and behavioral activity with the aim to determine their relative contribution to changes in body shape. We show that all three variables, the presence of a predator, food level, and activity, both additively and interactively, affected the body shape of perch. In general, the presence of predators, lower swimming activity, and higher food levels induced a deep body shape, with predation and behavior having similar effect and food treatment the smallest effect. The shape changes seemed to be mediated by changes in growth rate as body condition showed a similar effect as shape with regard to food‐level and predator treatments. Our results suggests that shape changes in animals to one environmental factor, for example, predation risk, can be context dependent, and depend on food levels or behavioral responses. Theoretical and empirical studies should further explore how this context dependence affects fitness components such as resource gain and mortality and their implications for population dynamics.  相似文献   

17.
Genomic traits reflect the evolutionary processes that have led to ecological variation among extant organisms, including variation in how they acquire and use resources. Soil fungi have diverse nutritional strategies and exhibit extensive variation in fitness along resource gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting resource exploitation and habitat preferences. We found species with large genomes exhibited nutrient-poor mycelium and low GC content. These patterns were observed across fungal guilds but with varying explanatory power. We then matched trait data to fungal species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts in guild composition and with species turnover within guilds. These findings highlight fundamental mechanisms that underpin successful ecological strategies for soil fungi.  相似文献   

18.
Individuals from the same population generally vary in suites of correlated behavioral traits: personality. Yet, the strength of the behavioral correlations sometimes differs among populations and environmental conditions, suggesting that single underlying mechanisms, such as genetic constraints, cannot account for them. We propose, instead, that such suites of correlated traits may arise when a single key behavior has multiple cascading effects on several other behaviors through affecting the range of options available. For instance, an individual's shyness can constrain its habitat choice, which, in turn, could restrict the expression of other behavioral traits. We hypothesize that shy individuals should be especially restrained in their choice of habitat when the risk of predation is high, which then canalizes them into different behavioral options making them appear behaviorally distinct from bolder individuals. We test this idea using an individual‐based simulation model. Our results show that individual differences in boldness can be sufficient, under high predation pressure, to generate behavioral correlations between boldness and both the tendency to aggregate and the propensity to use social information. Thus, our findings support the idea that some behavioral syndromes can be, at least to some extent, labile. Our model further predicts that such cascading effects should be more pronounced in populations with a long history of predation, which are expected to exhibit a low average boldness level, compared with predator‐naïve populations.  相似文献   

19.
In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence traits may include costs in fitness components such as growth, time to reproduction, or fecundity. To test the hypothesis that the expression of phenotypic plasticity incurs costs, we performed a common garden experiment with a freshwater snail, Radix balthica, a species known to change morphology in the presence of molluscivorous fish. We measured a number of predator-induced morphological and behavioural defence traits in snails that we reared in the presence or absence of chemical cues from fish. Further, we quantified the costs of plasticity in fitness characters related to fecundity and growth. Since plastic responses may be inhibited under limited resource conditions, we reared snails in different densities and thereby levels of competition. Snails exposed to predator cues grew rounder and thicker shells, traits confirmed to be adaptive in environments with fish. Defence traits were consistently expressed independent of density, suggesting strong selection from predatory molluscivorous fish. However, the expression of defence traits resulted in reduced growth rate and fecundity, particularly with limited resources. Our results suggest full defence in predator related traits regardless of resource availability, and costs of defence consequently paid in traits related to fitness.  相似文献   

20.
Trap-constructing organisms provide a unique opportunity for the study of resource allocation, because an observer can unambiguously determine the allocation to foraging. In species that synthesize a trap from physiologically important compounds, there is the further advantage that there may be direct trade-offs between allocation of resources to foraging and physiological functions. We examined the ability of the spider Nephila clavipes (L.; Araneae: Tetragnathidae) to synthesize resources that are known to be used for both web synthesis and non-foraging physiological functions. We found that choline, required for both web function and physiological function, is an essential nutrient: it is not synthesized by this spider. Under laboratory conditions with a diet of fruit flies, choline is limiting, and the spiders make allocation trade-offs between investing choline in foraging (the web) or in their body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号