首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the factors that constrain and drive changes in food chain length represents an open challenge in ecology. Although several explanatory hypotheses have been proposed, no synthesis has yet been achieved. The role of body size has been well-studied in recent years because the hierarchy of trophic connections – in which large animals consume small ones – suggests a positive relationship between trophic position and body size. Empirical evidence, however, supports the existence of both positive and negative associations, and some studies have even reported no significant relationship between trophic position and body size. These results suggest that the relationship may be non-monotonic and driven by several interacting mechanisms. Here, we analyze the effects of energetic limitations and structural constraints on species' trophic positions. We show that the trophic position of small-bodied animals can be limited by their ability to consume large prey, whereas energetic limitations strongly constrain trophic positions for large-bodied animals, with the intensity of this constraint depending on the amount of energy available to top predators. These differences in limiting mechanisms can account for the observed variability in the association between the trophic position of top predators and size. Furthermore, our derivation makes use of the Metabolic theory of ecology and predicts a negative relationship between temperature and the maximum achievable food chain length, providing a mechanistic foundation for the observed reductions in food chain length with temperature.  相似文献   

2.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

3.
The length of a river food chain changed from year to year, shifting with the hydrologic regime. During drought years, grazers suppressed algae across a nutrient gradient, while predators were functionally unimportant. Following flood disturbance, predators suppressed grazers, releasing algae. These results suggest that hydrologic regime, rather than productivity, determines the functional length of this river food chain. Within years, algae and grazer biomass responded to an experimental productivity gradient in patterns predicted by simple trophic models that assume efficient energy transfer. Understanding differences among species within trophic levels, however, was crucial in delineating the controlling interactions.  相似文献   

4.
Food chain length (FCL) represents a fundamental metric within ecology because it has implications for ecosystem function and responses to environmental change. Omnivory between linked food chains situated within large ecosystems can increase FCL, whereas overlap of food chains within small or spatially compressed ecosystems is generally thought to decrease FCL. Yet FCL varies widely in small ecosystems and the mechanisms underlying determinants of FCL in these systems is unclear. In small shallow lakes, littoral structure is a predictor of FCL but it is unclear whether this is due to productivity or refuge mechanisms. Here we provide evidence, using consumer resource food web modules parameterized with empirical data, that refuge in spatially compressed ecosystems has the ability on its own to increase the trophic position of top predators by increasing the biomass of top and intermediate predators across a range of common food web module structures. Our results suggest that refuge is an important driver of FCL in small ecosystems, which has implications for determining responses of these systems to environmental change.  相似文献   

5.
That larger areas will typically host more diverse ecological assemblages than small ones has been regarded as one of the few fundamental ‘laws’ in ecology. Yet, area may affect not only species diversity, but also the trophic structure of the local ecological assemblage. In this context, recent theory on trophic island biogeography offers two clear‐cut predictions: that the slope of the species–area relationship should increase with trophic rank, and that food chain length (i.e. the number of trophic levels) should increase with area. These predictions have rarely been verified in terrestrial systems. To offer a stringent test of key theory, we focused on local food chains consisting of trophic specialists: plants, lepidopteran herbivores, and their primary and secondary parasitoids. For each of these four trophic levels, we surveyed species richness across a set of 20 off‐shore continental islands spanning a hundred‐fold range in size. We then tested three specific hypotheses: that species richness is affected by island size, that the slope of the species–area curve is related to trophic rank, and that such differences in slope translate into variation in food chain length with island size. Consistent with these predictions, estimates of the species–area slope steepened from plants through herbivores and primary parasitoids to secondary parasitoids. As a result of the elevated sensitivity of top consumers to island size, food chain length decreased from large to small islands. Since island size did not detectably affect the ratio between generalists and specialists among either herbivores (polyphages vs oligophages) or parasitoids (idiobionts vs koinobionts), the patterns observed seemed more reflective of changes in the overall number of nodes and levels in local food webs than of changes in their linking structure. Overall, our results support the trophic‐level hypothesis of island biogeography. Per extension, they suggest that landscape modification may imperil food web integrity and vital biotic interactions.  相似文献   

6.
7.
8.
1. We examined effects of water temperature on the community structure of a three trophic level food chain (predatory fish, herbivorous caddisfly larvae and periphyton) in boreal streams. We used laboratory experiments to examine (i) the effects of water temperature on feeding activities of fish and caddisfly larvae and on periphyton productivity, to evaluate the thermal effects on each trophic level (species‐level experiment), and (ii) the effects of water temperature on predation pressure of fish on abundance of the lower trophic levels, to evaluate how temperature affects top‐down control by fish (community‐level experiment). 2. In the species‐level experiment, feeding activity of fish was high at 12 °C, which coincides with the mean summer temperature in forested streams of Hokkaido, Japan, but was depressed at 3 °C, which coincides with the mean winter temperature, and also above 18 °C, which coincides with the near maximum summer temperatures. Periphyton productivity increased over the range of water temperatures. 3. In the community‐level experiments, a top‐down effect of fish on the abundance of caddisfly larvae and periphyton was clear at 12 °C. This effect was not observed at 3 and 21 °C because of low predation pressure of fish at these temperatures. 4. These experiments revealed that trophic cascading effects may vary with temperature even in the presence of abundant predators. Physiological depression of predators because of thermal stress can alter top‐down control and lead to changes in community structure. 5. We suggest that thermal habitat alteration can change food web structure via combinations of direct and indirect trophic interactions.  相似文献   

9.
  1. Characterising food-web responses to environmental factors could greatly improve our understanding of environment-biota relationships, and especially in floodplains where trophic interactions can be particularly important during phases of hydrological disconnection. The effects of floodplain hydrology and environmental attributes on structural aspects of biotic assemblages have been extensively studied, but responses at the functional level remain largely unknown.
  2. Here, we characterised a central aspect of food-web architecture, the food chain length, as the maximum trophic position within 24 macroinvertebrate communities of parafluvial habitats in the Maggia river floodplain, in Switzerland. We investigated how the food chain length changed with different levels of habitat size, primary productivity and disturbance, the three factors potentially affecting food chain length in both theoretical and empirical studies.
  3. We found that food chain length was lower in frequently flooded habitats and immediately after a flood. We also showed that trophic omnivory, where predators fed at lower trophic levels after flooding, and in more frequently flooded habitats, may explain these changes.
  4. These findings show that trophic omnivory may explain how predators resist disturbance and are maintained in highly dynamic landscapes. More importantly, given that trophic omnivory may overall weaken trophic linkages and thus increase food-web stability, this suggests that it could be a key mechanism in sustaining biodiversity in river floodplains.
  相似文献   

10.
Classical food web theory holds that energy channels are regulated by top‐down control with increasing productivity, arising from within‐channel processes. However, these hypotheses do not consider the existence of parallel energy channels linked by shared resource pools and which can fuel generalist predators, imposing trophic control arising from multi‐channel processes. Using 23 large marine food webs, we show that food web responses to increasing productivity are consistent with the apparent trophic cascade hypothesis (ATCH) – with rising productivity predators derive an increasing fraction of their diet from increasingly productive bottom‐up controlled detritus channels, thereby subsidising predator biomass, and in turn strengthening top‐down control in parallel grazing channels. These results testify to a fundamental role of detritus channels specifically and multi‐channel processes in general in mediating food web response to productivity and demonstrate that the ATCH provides an alternative explanation for classical predictions of top‐down control.  相似文献   

11.
The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.  相似文献   

12.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

13.
Structure of tropical river food webs revealed by stable isotope ratios   总被引:7,自引:0,他引:7  
Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relationships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish δ15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. This was in contrast to our expectation that productive systems would promote longer food chains. Although isotope ratios could not resolve species-level feeding pathways, they did reveal how top consumers integrate isotopic variability occurring lower in the food web. Top piscivores, regardless of species, had carbon and nitrogen profiles less variable than other trophic groups.  相似文献   

14.
15.
Single trophic‐level studies of the relationship between biodiversity and ecosystem functioning highlight the importance of mechanisms such as resource partitioning, facilitation, and sampling effect. In a multi‐trophic context, trophic interactions such as intraguild predation may also be an important mediator of this relationship. Using a salt‐marsh food web, we investigated the interactive effects of predator species richness (one to three species) and trophic composition (strict predators, intraguild predators, or a mixture of the two) on ecosystem functions such as prey suppression and primary production via trophic cascades. We found that the trophic composition of the predator assemblage determined the impact of increasing predator species richness on the occurrence of trophic cascades. In addition, increasing the proportion of intraguild predator species present diminished herbivore suppression and reduced primary productivity. Therefore, trophic composition of the predator assemblage can play an important role in determining the nature of the relationship between predator diversity and ecosystem function.  相似文献   

16.
Biodiversity and food chain length each can strongly influence ecosystem functioning, yet their interactions rarely have been tested. We manipulated grazer diversity in seagrass mesocosms with and without a generalist predator and monitored community development. Changing food chain length altered biodiversity effects: higher grazer diversity enhanced secondary production, epiphyte grazing, and seagrass biomass only with predators present. Conversely, changing diversity altered top‐down control: predator impacts on grazer and seagrass biomass were weaker in mixed‐grazer assemblages. These interactions resulted in part from among‐species trade‐offs between predation resistance and competitive ability. Despite weak impact on grazer abundance at high diversity, predators nevertheless enhanced algal biomass through a behaviourally mediated trophic cascade. Moreover, predators influenced every measured variable except total plant biomass, suggesting that the latter is an insensitive metric of ecosystem functioning. Thus, biodiversity and trophic structure interactively influence ecosystem functioning, and neither factor's impact is predictable in isolation.  相似文献   

17.
Large pelagic predators occupy high positions in food webs and could control lower trophic level species by direct and indirect ecological interactions. In this study we aimed to test the hypotheses: (1) pelagic predators are keystone species, and their removals could trigger impacts on the food chain; (2) higher landings of pelagic predators could trigger fishing impacts with time leading to a drop in the mean trophic level of catches; and (3) recovery in the pelagic predators populations, especially for sharks, could be achieved with fishing effort reduction. We performed a food web approach using an Ecopath with Ecosim model to represent the Southeastern and Southern Brazil, a subtropical marine ecosystem, in 2001. We then calibrated the baseline model using catch and fishing effort time series from 2001 to 2012. Afterwards, we simulated the impact of fishing effort changes on species and assessed the ecological impacts on the pelagic community from 2012 to 2025. Results showed that the model was well fitted to landing data for the majority of groups. The pelagic predators species were classified as keystone species impacting mainly on pelagic community. The ecosystem was resilient and fisheries seem sustainable at that time. However, the temporal simulation, from 2001 to 2012, revealed declines in the biomass of three sharks, tuna and billfish groups. It was possible observe declines in the mean trophic level of the catch and in the mean total length of landings. Longline fisheries particularly affected the sharks, billfish and swordfish, while hammerhead sharks were mostly impacted by gillnet fishery. Model simulations showed that large sharks’ biomasses could be recovered or maintained only after strong fishing effort reduction.  相似文献   

18.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

19.
Much research has focused on identifying species that are susceptible to extinction following ecosystem fragmentation, yet even those species that persist in fragmented habitats may have fundamentally different ecological roles than conspecifics in unimpacted areas. Shifts in trophic role induced by fragmentation, especially of abundant top predators, could have transcendent impacts on food web architecture and stability, as well as ecosystem function. Here we use a novel measure of trophic niche width, based on stable isotope ratios, to assess effects of aquatic ecosystem fragmentation on trophic ecology of a resilient, dominant, top predator. We demonstrate collapse in trophic niche width of the predator in fragmented systems, a phenomenon related to significant reductions in diversity of potential prey taxa. Collapsed niche width reflects a homogenization of energy flow pathways to top predators, likely serving to destabilize remnant food webs and render apparently resilient top predators more susceptible to extinction through time.  相似文献   

20.
王玉玉  徐军  雷光春 《生态学报》2013,33(19):5990-5996
食物链长度是生态系统的基本属性,其变化决定着群落结构和生态系统功能。稳定同位素分析技术的进步推进了生态系统中食物链长度决定因子相关研究的开展。尽管近期的研究证明了食物链长度与资源可利用性、生态系统大小、干扰等远因之间的关系,但是对于食物网内部结构变化这一近因对食物链长度的影响作用关注较少。综述了边界明确和开放类型淡水生态系统中食物链长度的相关研究进展;探讨了远因和近因机制在决定食物链长度中的作用;给出了判断不同层次和尺度上决定食物链长度机制的概念框架;为今后更好的开展不同生态系统间食物链长度的比较研究提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号