首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Autophagy》2013,9(2):151-153
The regulatory subunit 1-alpha (RI-alpha) of protein kinase A (PKA) and the mTOR kinase are involved in a common pathway regulating mammalian autophagy. RI-alpha was found to localize on Rab7-positive late endosomes and on LC3-positive autophagosomal membranes in cultured cells. RI-alpha was also shown to physically interact with mTOR kinase and affect its phosphorylation and activity.1 In this addendum, we further explore the subcellular distribution of mTOR related to RI_ and LC3. We present experiments showing that mTOR colocalizes with RI-alpha-, Rab7- and LC3-positive membranes in cultured cells. Because RIa regulates the phosphorylation and activity of mTOR kinase, which we now show localizes on autophagosomal membranes, the possibility emerges that the RI-alpha-mTOR complex acts at the level of autophagosome maturation.

Addendum to:

Depletion of Type IA Regulatory Subunit (RI-alpha) of Protein Kinase A (PKA) in Mammalian Cells and Tissues Activates mTOR and Causes Autophagic Deficiency

M. Mavrakis, J. Lippincott-Schwartz, C.A. Stratakis and I. Bossis

Hum Mol Genet 2006; 15:2962-71  相似文献   

3.
4.
Protein kinase regulated by RNA (PKR) plays critical roles in cell growth and apoptosis and is implicated as a potential pathogenic factor of Alzheimer's, Parkinson's, and Huntington's diseases. Here we report that this proapoptotic kinase is also involved in Fanconi anemia (FA), a disease characterized by bone marrow (BM) failure and leukemia. We have used a BM extract to show that three FA proteins, FANCA, FANCC, and FANCG, functionally interact with the PKR kinase, which in turn regulates translational control. By using a combined immunoprecipitation and reconstituted kinase assay, in which an active PKR kinase complex was captured from a normal cell extract, we demonstrated functional interactions between the FA proteins and the PKR kinase. In primary human BM cells, mutations in the FANCA, FANCC, and FANCG genes markedly increase the amount of PKR bound to FANCC, and this PKR accumulation is correlated with elevated PKR activation and hypersensitivity of BM progenitor cells to growth repression mediated by the inhibitory cytokines interferon-gamma and tumor necrosis factor-alpha. Specific inhibition of PKR by 2-aminopurine in these FA BM cells attenuates PKR activation and apoptosis induction. In lymphoblasts derived from an FA-C patient, overexpression of a dominant negative mutant PKR (PKRK296R) suppressed PKR activation and apoptosis induced by interferon-gamma and tumor necrosis factor-alpha. Furthermore, by using genetically matched wild-type and PKR-null cells, we demonstrated that forced expression of a patient-derived FA-C mutant (FANCCL554P) augmented double-stranded RNA-induced PKR activation and cell death. Thus, inappropriate activation of PKR as a consequence of certain FA mutations might play a role in bone marrow failure that frequently occurred in FA.  相似文献   

5.
The strength of the interaction between the catalytic and regulatory subunits in protein kinase A differs among species. The linker region from regulatory subunits is non-conserved. To evaluate the participation of this region in the interaction with the catalytic subunit, we have assayed its effect on the enzymatic properties of the catalytic subunit. Protein kinase A from three fungi, Mucor rouxii, Mucor circinelloides and Saccharomyces cerevisiae have been chosen as models. The R-C interaction is explored by using synthetic peptides of 8, 18 and 47 amino acids, corresponding to the R subunit autophosphorylation site plus a variable region toward the N terminus (0, 10, or 39 residues). The Km of the catalytic subunits decreased with the length of the peptide, while the Vmax increased. Viscosity studies identified product release as the rate limiting step for phosphorylation of the longer peptides. Pseudosubstrate derivatives of the 18 residue peptides did not display a competitive inhibition behavior toward either kemptide or a bona fide protein substrate since, at low relative pseudosubstrate/substrate concentration, stimulation of kemptide or protein substrate phosphorylation was observed. The behavior was mimicked by intact R. We conclude that in addition to its negative regulatory role, the R subunit stimulates C activity via distal interactions.  相似文献   

6.
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.  相似文献   

7.
8.
BACKGROUND: The kinetochore attachment (spindle assembly) checkpoint arrests cells in metaphase to prevent exit from mitosis until all the chromosomes are aligned properly at the metaphase plate. The checkpoint operates by preventing activation of the anaphase-promoting complex (APC), which triggers anaphase by degrading mitotic cyclins and other proteins. This checkpoint is active during normal mitosis and upon experimental disruption of the mitotic spindle. In yeast, the serine/threonine protein kinase Bub1 and the WD-repeat protein Bub3 are elements of a signal transduction cascade that regulates the kinetochore attachment checkpoint. In mammalian cells, activated MAPK is present on kinetochores during mitosis and activity is upregulated by the spindle assembly checkpoint. In vertebrate unfertilized eggs, a special form of meiotic metaphase arrest by cytostatic factor (CSF) is mediated by MAPK activation of the protein kinase p90(Rsk), which leads to inhibition of the APC. However, it is not known whether CSF-dependent metaphase arrest caused by p90(Rsk) involves components of the spindle assembly checkpoint. RESULTS: xBub1 is present in resting oocytes and its protein level increases slightly during oocyte maturation and early embryogenesis. In Xenopus oocytes, Bub1 is localized to kinetochores during both meiosis I and meiosis II, and the electrophoretic mobility of Bub1 upon SDS-PAGE decreases during meiosis I, reflecting phosphorylation and activation of the enzyme. The activation of Bub1 can be induced in interphase egg extracts by selective stimulation of the MAPK pathway by c-Mos, a MAPKKK. In oocytes treated with the MEK1 inhibitor U0126, the MAPK pathway does not become activated, and Bub1 remains in its low-activity, unshifted form. Injection of a constitutively active target of MAPK, the protein kinase p90(Rsk), restores the activation of Bub1 in the presence of U0126. Moreover, purified p90(Rsk) phosphorylates Bub1 in vitro and increases its protein kinase activity. CONCLUSIONS: Bub1, an upstream component of the kinetochore attachment checkpoint, is activated during meiosis in Xenopus in a MAPK-dependent manner. Moreover, a single substrate of MAPK, p90(Rsk), is sufficient to activate Bub1 in vitro and in vivo. These results indicate that in vertebrate eggs, kinetochore attachment/spindle assembly checkpoint proteins, including Bub1, are downstream of p90(Rsk) and may be effectors of APC inhibition and CSF-dependent metaphase arrest by p90(Rsk).  相似文献   

9.
The unfolding of the recombinant regulatory subunit of cAMP-dependent protein kinase I was followed by monitoring the intrinsic protein fluorescence. Unfolding proceeds in at least two stages. First, the quenching of fluorescence due to cAMP binding is abolished at relatively low levels of urea (less than 2 M) and is observed as an increase in intensity at 340 nm. The high-affinity binding of cAMP is retained in 3 M urea even though the quenching is lost. The second stage of unfolding, presumably representing unfolding of the polypeptide chain, is seen as a shift in lambda max from 340 to 353 nm. The midpoint concentration, Cm, for this process is 5.0 M. Cyclic AMP binding activity is lost at a half-maximal urea concentration of 3.5 M and precedes the shift in lambda max. Unfolding of the protein in the presence of urea was fully reversible; furthermore, the presence of excess levels of cAMP stabilized the regulatory subunit. A free energy value (delta GDH2O) of 7.1 +/- 0.2 kcal/mol was calculated for the native form of the protein when denaturation was induced with either urea or guanidine hydrochloride. Iodide quenching of tryptophan fluorescence was used to elucidate the number of tryptophan residues accessible during various stages of the unfolding process. In the native cAMP-bound form of the regulatory subunit, only one of the three tryptophans in the regulatory subunit is quenched by iodide while more than two tryptophans can be quenched with iodide in the presence of 3 M urea.  相似文献   

10.
The fluorescence of Trp-226 in the regulatory subunit of bovine type II cAMP-dependent protein kinase is unaffected by the binding of cAMP, but is quenched by the binding of 2'-dansyl-cAMP (DNS-cAMP). Up to 67% of the fluorescence of Trp-226 can be quenched by resonant energy transfer to the DNS-cAMP bound to the first site, and 96% of the fluorescence can be quenched by saturating both sites with DNS-cAMP. The observed efficiencies of energy transfer gave a distance of 16 A between Trp-226 and the DNS-cAMP bound at the first site and a distance of 12.7 A between Trp-226 and the DNS-cAMP bound at second site. The fluorescence of Trp-226 was suppressed by incubation of RII with the self-complementary octanucleotide TGACGTCA (CRE) due to binding of the oligonucleotide to RII. A detailed study of the binding equilibrium showed that each RII(cAMP)2 molecule binds 1 molecule of CRE with Kd = 80 nM. The corresponding Kd value for cAMP-depleted RII was found to be 25-fold higher. RII was also found to bind randomly selected DNA fragments with an average Kd value much higher than that of CRE. These observations show for the first time that the binding of oligonucleotide to RII is cAMP-enhanced and sequence-selective.  相似文献   

11.
The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ.  相似文献   

12.
This study reports the identification and characterization of the regulatory subunit, TbRSU, of protein kinase A of the parasitic protozoon Trypanosoma brucei. TbRSU is coded for by a single copy gene. The protein contains an unusually long N-terminal domain, the pseudosubstrate site involved in binding and inactivation of the catalytic subunit, and two C-terminally located, closely spaced cyclic nucleotide binding domains. Immunoprecipitation of TbRSU coprecipitates a protein kinase activity with the characteristics of protein kinase A: it phosphorylates a protein kinase specific substrate, and it is strongly inhibited by a synthetic protein kinase inhibitor peptide. Unexpectedly, this kinase activity could not be stimulated by cAMP, but by cGMP only. Binding studies with recombinant cyclic nucleotide binding domains of TbRSU confirmed that both domains bind cGMP with Kd values in the lower micromolar range, and that up to a 100-fold excess of cAMP does not compete with cGMP binding.  相似文献   

13.
We studied 11 new kindreds with primary pigmented nodular adrenocortical disease (PPNAD) or Carney complex (CNC) and found that 82% of the kindreds had PRKAR1A gene defects (including seven novel inactivating mutations), most of which led to nonsense mRNA and, thus, were not expressed in patients' cells. However, a previously undescribed base substitution in intron 6 (exon 6 IVS +1G-->T) led to exon 6 skipping and an expressed shorter PRKAR1A protein. The mutant protein was present in patients' leukocytes and tumors, and in vitro studies indicated that the mutant PRKAR1A activated cAMP-dependent protein kinase A (PKA) signaling at the nuclear level. This is the first demonstration of an inactivating PRKAR1A mutation being expressed at the protein level and leading to stimulation of the PKA pathway in CNC patients. Along with the lack of allelic loss at the PRKAR1A locus in most of the tumors from this kindred, these data suggest that alteration of PRKAR1A function (not only its complete loss) is sufficient for augmenting PKA activity leading to tumorigenesis in tissues affected by CNC.  相似文献   

14.
CKS1B is a member of the highly conserved cyclin kinase subunit 1 (CKS1) protein family which interacts with cyclin-dependent kinases and plays a critical role in cell cycle progression. In oral squamous cell carcinoma (OSCC), as in other malignancies, CKS1B overexpression has been correlated with reduced survival. To our knowledge, no studies evaluating the genetic status of CKS1B gene in OSCC have been reported. Herein, genetic and protein status of CKS1B were analyzed by immunohistochemical (IHC) and fluorescence in situ hybridization (FISH) techniques in a series of primary OSCC (n=51) and lymph node OSCC metastases samples (n=14). The observed results were compared with those obtained in either inflammatory (oral lichen planus [OLP]) (n=13) and premalignant oral mucosal lesions (oral leukoplakia) (n=16). A significant CKS1B overexpression was observed in OSCC and lymph node metastases samples than in OLP and oral leukoplakia (mean 70% vs 35%, p<0.001). CKS1B overexpression correlated with p27 loss of expression (p=0.0013) and SKP2 overexpression (p<0.00). FISH study disclosed statistical differences in both gene amplifications and gains between samples corresponding to OSCC and metastases from those of OLP and leukoplakia (p<0.001). Amplifications were present in 53% of OSCC samples and 33% of lymph node metastases vs 14% of oral leukoplakia and 0% of OLP biopsy specimens (p=0.002). Polysomies of chromosome 1 were seen in 46% of OSCC, 33% of ganglionar metastases, 14% of oral leukoplakia and 10% of OLP (p=0.036). Correlation of CKS1B over-expression and gains (both polysomies and amplifications) determined by FISH was statistically significant (p<0.001). Our results indicate that a high CKS1B expression is a common finding in primary OSCC which correlates with p27 low expression and SKP2 overexpression. This phenomenon may be due either to numerical (chromosome 1 polysomy) or structural (amplifications) CKS1B genetic abnormalities. This phenotypical and cytogenetic profile is not observed in premalignant or inflammatory oral mucosal lesions.  相似文献   

15.
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.  相似文献   

16.
17.
Crystals of type I cAMP-dependent protein kinase regulatory subunit have been grown from solutions of ammonium sulfate. The crystals are square bipyramids, space group P4(1)2(1)2 (P4(3)2(1)2), with a = b = 106.9 +/- 0.6 A and c = 212.4 +/- 1.0 A. There are two dimers of the regulatory subunit/crystallographic asymmetric unit. The crystals are stable for 3-4 days in the x-ray beam and diffract to at least 3.5-A resolution.  相似文献   

18.
Immunochemical analysis of the cAMP-dependent protein kinase regulatory subunit type II was performed with the use of two rabbit antisera elicited to a free R-subunit from pig brain and to a RcAMP complex. Quantitative precipitation of the homogeneous antigen revealed six determinants on the R-molecule. Of these at least one is localized in the R-fragment (37 kD), the others--in the N-terminal part of the R-molecule. The antigenic determinants seem to be remoted from the cAMP-binding centers, since the attachment of the affinity purified antibody Fab-fragments to the R-subunit did not influence the cAMP-binding activity of the latter. The antibodies to RcAMP caused dissociation of the holoenzyme. The antibody Fab-fragment binding to the R-subunit prevented its association with the catalytic subunit. The results of immunochemical analysis suggest that the R-subunit adopts different conformations when bound to cAMP or to the catalytic subunit.  相似文献   

19.
Protein serine/threonine phosphatase 2A (PP2A) is a multifunctional regulator of cellular signaling. Variable regulatory subunits associate with a core dimer of scaffolding and catalytic subunits and are postulated to dictate substrate specificity and subcellular location of the heterotrimeric PP2A holoenzyme. The role of brain-specific regulatory subunits in neuronal differentiation and signaling was investigated in the PC6-3 subline of PC12 cells. Endogenous Bbeta, Bgamma, and B'beta protein expression was induced during nerve growth factor (NGF)-mediated neuronal differentiation. Transient expression of Bgamma, but not other PP2A regulatory subunits, facilitated neurite outgrowth in the absence and presence of NGF. Tetracycline-inducible expression of Bgamma caused growth arrest and neurofilament expression, further evidence that PP2A/Bgamma can promote differentiation. In PC6-3 cells, but not non-neuronal cell lines, Bgamma specifically promoted long lasting activation of the mitogen-activated protein (MAP) kinase cascade, a key mediator of neuronal differentiation. Pharmacological and dominant-negative inhibition and kinase assays indicate that Bgamma promotes neuritogenesis by stimulating the MAP kinase cascade downstream of the TrkA NGF receptor but upstream or at the level of the B-Raf kinase. Mutational analyses demonstrate that the divergent N terminus is critical for Bgamma activity. These studies implicate PP2A/Bgamma as a positive regulator of MAP kinase signaling in neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号