首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Magnetotactic bacteria navigate along magnetic field lines using well-ordered chains of membrane-enclosed magnetic crystals, referred to as magnetosomes, which have emerged as model to investigate organelle biogenesis in prokaryotic systems. To become divided and segregated faithfully during cytokinesis, the magnetosome chain has to be properly positioned, cleaved and separated against intrachain magnetostatic forces. Here we demonstrate that magnetotactic bacteria use dedicated mechanisms to control the position and division of the magnetosome chain, thus maintaining magnetic orientation throughout divisional cycle. Using electron and time-lapse microscopy of synchronized cells of Magnetospirillum gryphiswaldense, we confirm that magnetosome chains undergo a dynamic pole-to-midcell translocation during cytokinesis. Nascent chains were recruited to division sites also in division-inhibited cells, but not in a mamK mutant, indicating an active mechanism depending upon the actin-like cytoskeletal magnetosome filament. Cryo-electron tomography revealed that both the magnetosome chain and the magnetosome filament are spilt into halves by asymmetric septation and unidirectional indentation, which we interpret in terms of a specific adaptation required to overcome the magnetostatic interactions between separating daughter chains. Our study demonstrates that magnetosome division and segregation is co-ordinated with cytokinesis and resembles partitioning mechanisms of other organelles and macromolecular complexes in bacteria.  相似文献   

2.
The presence of a narrow shape and size distribution for magnetite crystals within magnetotactic organisms suggests strongly that there are species-specific mechanisms that control the process of biomineralization. In order to explore the extent of this control, cultures of Aquaspirillum magnetotacticum in the exponential growth phase were exposed to increasing magnetic pulses with the aim of separating cell populations on the basis of their magnetic coercivities. Isothermal remanent magnetization and anhysteretic remanent magnetization studies were performed with freeze-dried magnetic cells after the remagnetization treatment. Subpopulations of A. magnetotacticum that showed an increase in coercivity correlated with the intensity of the magnetic pulses were isolated. After successive subcultures of the remaining north-seeking cells, a maximum bulk coercivity (Hbmax) of 40 mT was obtained after treatment with a 55-mT pulse. Although we obtained A. magnetotacticum variants displaying higher coercivities than the wild-type strain, changes in crystal size or shape of the magnetite crystals were below reliable detection limits with transmission electron microscopy. Attempts to shift the coercivity towards higher values caused it to decrease, a change which was accompanied by an increase in magnetostatic interactions of the magnetosome chains as well as an increase in the cell population displaying an abnormal distribution of the magnetosome chains. Ultrastructural analyses of cells and magnetosomes revealed the appearance of cystlike bodies which occasionally contained magnetosomes. The increase in cystlike cells and abnormal magnetosome chains when higher magnetic pulses were used suggested that magnetosomes were collapsing because of stronger interparticle magnetostatic forces.  相似文献   

3.
Magnetotactic bacteria (MTB) align along the Earth''s magnetic field by the activity of intracellular magnetosomes, which are membrane-enveloped magnetite or greigite particles that are assembled into well-ordered chains. Formation of magnetosome chains was found to be controlled by a set of specific proteins in Magnetospirillum gryphiswaldense and other MTB. However, the contribution of abiotic factors on magnetosome chain assembly has not been fully explored. Here, we first analyzed the effect of growth conditions on magnetosome chain formation in M. gryphiswaldense by electron microscopy. Whereas higher temperatures (30 to 35°C) and high oxygen concentrations caused increasingly disordered chains and smaller magnetite crystals, growth at 20°C and anoxic conditions resulted in long chains with mature cuboctahedron-shaped crystals. In order to analyze the magnetosome chain in electron microscopy data sets in a more quantitative and unbiased manner, we developed a computerized image analysis algorithm. The collected data comprised the cell dimensions and particle size and number as well as the intracellular position and extension of the magnetosome chain. The chain analysis program (CHAP) was used to evaluate the effects of the genetic and growth conditions on magnetosome chain formation. This was compared and correlated to data obtained from bulk magnetic measurements of wild-type (WT) and mutant cells displaying different chain configurations. These techniques were used to differentiate mutants due to magnetosome chain defects on a bulk scale.  相似文献   

4.
Klumpp S  Faivre D 《PloS one》2012,7(3):e33562
Magnetotactic bacteria assemble chains of magnetosomes, organelles that contain magnetic nano-crystals. A number of genetic factors involved in the controlled biomineralization of these crystals and the assembly of magnetosome chains have been identified in recent years, but how the specific biological regulation is coordinated with general physical processes such as diffusion and magnetic interactions remains unresolved. Here, these questions are addressed by simulations of different scenarios for magnetosome chain formation, in which various physical processes and interactions are either switched on or off. The simulation results indicate that purely physical processes of magnetosome diffusion, guided by their magnetic interactions, are not sufficient for the robust chain formation observed experimentally and suggest that biologically encoded active movements of magnetosomes may be required. Not surprisingly, the chain pattern is most resembling experimental results when both magnetic interactions and active movement are coordinated. We estimate that the force such active transport has to generate is compatible with forces generated by the polymerization or depolymerization of cytoskeletal filaments. The simulations suggest that the pleiotropic phenotypes of mamK deletion strains may be due to a defect in active motility of magnetosomes and that crystal formation in magneteosome vesicles is coupled to the activation of their active motility in M. gryphiswaldense, but not in M. magneticum.  相似文献   

5.
Magnetospirillum magnetotacticum are magnetotactic bacteria that form a single chain of magnetite magnetosomes within its cytoplasm. Here, we studied the ultrastructure of M. magnetotacticum by freeze-fracture and deep-etching to understand the spatial correlation between the magnetosome chain and the cell envelope and its possible implications for magnetotaxis. Magnetosomes were found mainly near the cell envelope, forming chains that were closely associated with the granular cytoplasmic material. The membrane surrounding the magnetosomes could be visualized in deep-etching preparations. Thin connections between magnetosome chains and the cell envelope were observed in deep-etching images. These results strengthen the hypothesis for the existence of structures that transfer the torque from the magnetosome chains to the whole cell during the orientation of magnetotactic bacteria to a magnetic field lines.  相似文献   

6.
Aims: Intracellular magnetosome synthesis in magnetotactic bacteria has been proposed to be a process involving functions of a variety of proteins. To learn more about the genetic control that is involved in magnetosome formation, nonmagnetic mutants are screened and characterized. Methods and Results: Conjugation‐mediated transposon mutagenesis was applied to screen for nonmagnetic mutants of Magnetospirillum magneticum AMB‐1 that were unable to respond to the magnetic field. A mutant strain with disruption of a gene locus encoding nitric oxide reductase was obtained. Growth and magnetosome formation under different conditions were further characterized. Conclusions: Interruption of denitrification by inactivating nitric oxide reductase was responsible for the compromised growth and magnetosome formation in the mutant with shorter intracellular chains of magnetite crystals than those of wild‐type cells under anaerobic conditions. Nevertheless, the mutant displayed apparently normal growth in aerobic culture. Significance and Impact of the Study: Efficient denitrification in the absence of oxygen is not only necessary for maintaining cell growth but may also be required to derive sufficient energy to mediate the formation of magnetosome vesicles necessary for the initiation or activation of magnetite formation.  相似文献   

7.
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.  相似文献   

8.
Bacterial cells, like their eukaryotic counterparts, are capable of constructing lipid-based organelles that carry out essential biochemical functions. The magnetosomes of magnetotactic bacteria are one such compartment that is quickly becoming a model for exploring the process of organelle biogenesis in bacteria. Magnetosomes consist of a lipid-bilayer compartment that houses a magnetic crystal. By arranging magnetosomes into chains within the cell, magnetotactic bacteria create an internal compass that is used for navigation along magnetic fields. Over the past decade, a number of studies have elucidated the possible factors involved in the formation of the magnetosome membrane and biomineralization of magnetic minerals. Here, we highlight some of these recent advances with a particular focus on the cell biology of magnetosome formation.  相似文献   

9.
Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1?1?1) and [Formula in text] capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed.  相似文献   

10.
Magnetotactic bacteria navigate along the earth's magnetic field using chains of magnetosomes, which are intracellular organelles comprising membrane-enclosed magnetite crystals. The assembly of highly ordered magnetosome chains is under genetic control and involves several specific proteins. Based on genetic and cryo-electron tomography studies, a model was recently proposed in which the acidic MamJ magnetosome protein attaches magnetosome vesicles to the actin-like cytoskeletal filament formed by MamK, thereby preventing magnetosome chains from collapsing. However, the exact functions as well as the mode of interaction between MamK and MamJ are unknown. Here, we demonstrate that several functional MamJ variants from Magnetospirillum gryphiswaldense and other magnetotactic bacteria share an acidic and repetitive central domain, which displays an unusual intra- and interspecies sequence polymorphism, probably caused by homologous recombination between identical copies of Glu- and Pro-rich repeats. Surprisingly, mamJ mutant alleles in which the central domain was deleted retained their potential to restore chain formation in a DeltamamJ mutant, suggesting that the acidic domain is not essential for MamJ's function. Results of two-hybrid experiments indicate that MamJ physically interacts with MamK, and two distinct sequence regions within MamJ were shown to be involved in binding to MamK. Mutant variants of MamJ lacking either of the binding domains were unable to functionally complement the DeltamamJ mutant. In addition, two-hybrid experiments suggest both MamK-binding domains of MamJ confer oligomerization of MamJ. In summary, our data reveal domains required for the functions of the MamJ protein in chain assembly and maintenance and provide the first experimental indications for a direct interaction between MamJ and the cytoskeletal filament protein MamK.  相似文献   

11.
The solution structure of a synthetic mutant type I antifreeze protein (AFP I) was determined in aqueous solution at pH 7.0 using nuclear magnetic resonance (NMR) spectroscopy. The mutations comprised the replacement of the four Thr residues by Val and the introduction of two additional Lys-Glu salt bridges. The antifreeze activity of this mutant peptide, VVVV2KE, has been previously shown to be similar to that of the wild type protein, HPLC6 (defined here as TTTT). The solution structure reveals an alphahelix bent in the same direction as the more bent conformer of the published crystal structure of TTTT, while the side chain chi1 rotamers of VVVV2KE are similar to those of the straighter conformer in the crystal of TTTT. The Val side chains of VVVV2KE assume the same orientations as the Thr side chains of TTTT, confirming the conservative nature of this mutation. The combined data suggest that AFP I undergoes an equilibrium between straight and bent helices in solution, combined with independent equilibria between different side chain rotamers for some of the amino acid residues. The present study presents the first complete sequence-specific resonance assignments and the first complete solution structure determination by NMR of any AFP I protein.  相似文献   

12.
Magnetotactic bacteria contain chains of magnetosomes that comprise a permanent magnetic dipole in each cell. In two separate, recent papers, Scheffel et al. and Komeili et al. describe the roles of the proteins MamJ and MamK in magnetosome chain formation. Here, we describe the two studies and highlight questions that must be addressed in future investigations of how magnetotactic bacteria construct their magnetic compass needles.  相似文献   

13.
Lin W  Pan Y 《Molecular microbiology》2011,82(6):1301-1304
The mechanism by which prokaryotic cells organize and segregate their intracellular organelles during cell division has recently been the subject of substantial interest. Unlike other microorganisms, magnetotactic bacteria (MTB) form internal magnets (known as magnetosome chain) for magnetic orientation, and thus face an additional challenge of dividing and equipartitioning this magnetic receptor to their daughter cells. Although MTB have been investigated more than four decades, it is only recently that the basic mechanism of how MTB divide and segregate their magnetic organelles has been addressed. In this issue of Molecular Microbiology, the cell cycle of the model magnetotactic bacterium, Magnetospirillum gryphiswaldense is characterized by Katzmann and co-workers. The authors have found that M. gryphiswaldense undergoes an asymmetric cell division along two planes. A novel wedge-like type of cellular constriction is observed before separation of daughter cells and magnetosome chains, which is assumed to help cell cope with the magnetic force within the magnetosome chain. The data shows that the magnetosome chain becomes actively recruited to the cellular division site, in agreement with the previous suggestions described by Staniland et al. (2010), and the actin-like protein MamK is likely involved in this fast polar-to-midcell translocalization. With the use of cryo-electron tomography, an arc-shaped Z ring is observed near the division site, which is assumed to trigger the asymmetric septation of cell and magnetosome chain.  相似文献   

14.
Magnetotactic bacteria form chains of intracellular membrane-enclosed, nanometre-sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated with the magnetosome membrane of Magnetospirillum gryphiswaldense are MamB and MamM, which were implicated in magnetosomal iron transport because of their similarity to the cation diffusion facilitator family. Here we demonstrate that MamB and MamM are multifunctional proteins involved in several steps of magnetosome formation. Whereas both proteins were essential for magnetite biomineralization, only deletion of mamB resulted in loss of magnetosome membrane vesicles. MamB stability depended on the presence of MamM by formation of a heterodimer complex. In addition, MamB was found to interact with several other proteins including the PDZ1 domain of MamE. Whereas any genetic modification of MamB resulted in loss of function, site-specific mutagenesis within MamM lead to increased formation of polycrystalline magnetite particles. A single amino acid substitution within MamM resulted in crystals consisting of haematite, which coexisted with magnetite crystals. Together our data indicate that MamM and MamB have complex functions, and are involved in the control of different key steps of magnetosome formation, which are linked by their direct interaction.  相似文献   

15.
Magnetospirillum gryphiswaldense uses intracellular chains of membrane‐enveloped magnetite crystals, the magnetosomes, to navigate within magnetic fields. The biomineralization of magnetite nanocrystals requires several magnetosome‐associated proteins, whose precise functions so far have remained mostly unknown. Here, we analysed the functions of MamX and the Major Facilitator Superfamily (MFS) proteins MamZ and MamH. Deletion of either the entire mamX gene or elimination of its putative haem c‐binding magnetochrome domains, and deletion of either mamZ or its C‐terminal ferric reductase‐like component resulted in an identical phenotype. All mutants displayed WT‐like magnetite crystals, flanked within the magnetosome chains by poorly crystalline flake‐like particles partly consisting of haematite. Double deletions of both mamZ and its homologue mamH further impaired magnetite crystallization in an additive manner, indicating that the two MFS proteins have partially redundant functions. Deprivation of ΔmamX and ΔmamZ cells from nitrate, or additional loss of the respiratory nitrate reductase Nap from ΔmamX severely exacerbated the magnetosome defects and entirely inhibited the formation of regular crystals, suggesting that MamXZ and Nap have similar, but independent roles in redox control of biomineralization. We propose a model in which MamX, MamZ and MamH functionally interact to balance the redox state of iron within the magnetosome compartment.  相似文献   

16.
Magnetotactic bacteria (MTB) are a group of Gram‐negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome‐chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome‐associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.  相似文献   

17.
Magnetotactic bacteria (MTB), a group of phylogenetically diverse organisms that use their unique intracellular magnetosome organelles to swim along the Earth’s magnetic field, play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have revealed that the bacterial actin protein MamK plays essential roles in the linear arrangement of magnetosomes in MTB cells belonging to the Proteobacteria phylum. However, the molecular mechanisms of multiple- magnetosome-chain arrangements in MTB remain largely unknown. Here, we report that the MamK filaments from the uncultivated ‘Candidatus Magnetobacterium casensis’ (Mcas) within the phylum Nitrospirae polymerized in the presence of ATP alone and were stable without obvious ATP hydrolysis-mediated disassembly. MamK in Mcas can convert NTP to NDP and NDP to NMP, showing the highest preference to ATP. Unlike its Magnetospirillum counterparts, which form a single magnetosome chain, or other bacterial actins such as MreB and ParM, the polymerized MamK from Mcas is independent of metal ions and nucleotides except for ATP, and is assembled into well-ordered filamentous bundles consisted of multiple filaments. Our results suggest a dynamically stable assembly of MamK from the uncultivated Nitrospirae MTB that synthesizes multiple magnetosome chains per cell. These findings further improve the current knowledge of biomineralization and organelle biogenesis in prokaryotic systems.  相似文献   

18.
Magnetospirillum gryphiswaldense MSR‐1 synthesizes membrane‐enclosed magnetite (Fe3O4) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome‐associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome‐directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi‐disciplinary approach to define the role of MamB during magnetosome formation. Using site‐directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo‐electron tomography, we show that MamB is most likely an active magnetosome‐directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport‐independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C‐terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.  相似文献   

19.
Magnetospirillum sp. strain AMB-1 is a Gram-negative -proteobacteriumthat synthesizes nano-sized magnetites, referred to as magnetosomes,aligned intracellularly in a chain. The potential of this nano-sizedmaterial is growing and will be applicable to broad researchareas. It has been expected that genome analysis would elucidatethe mechanism of magnetosome formation by magnetic bacteria.Here we describe the genome of Magnetospirillum sp. AMB-1 wildtype, which consists of a single circular chromosome of 4967148bp. For identification of genes required for magnetosome formation,transposon mutagenesis and determination of magnetosome membraneproteins were performed. Analysis of a non-magnetic transposonmutant library focused on three unknown genes from 2752 unknowngenes and three genes from 205 signal transduction genes. Partialproteome analysis of the magnetosome membrane revealed thatthe membrane contains numerous oxidation/reduction proteinsand a signal response regulator that may function in magnetotaxis.Thus, oxidation/reduction proteins and elaborate multidomainsignaling proteins were analyzed. This comprehensive genomeanalysis will enable resolution of the mechanisms of magnetosomeformation and provide a template to determine how magnetic bacteriamaintain a species-specific, nano-sized, magnetic single domainand paramagnetic morphology.  相似文献   

20.
Magnetotactic bacteria (MTB) are a diverse group of microorganisms with the ability to orient and migrate along geomagnetic field lines. This unique feat is based on specific intracellular organelles, the magnetosomes, which, in most MTB, comprise nanometer-sized, membrane bound crystals of magnetic iron minerals and organized into chains via a dedicated cytoskeleton. Because of the special properties of the magnetosomes, MTB are of great interest for paleomagnetism, environmental magnetism, biomarkers in rocks, magnetic materials and biomineralization in organisms, and bacterial magnetites have been exploited for a variety of applications in modern biological and medical sciences. In this paper, we describe general characteristics of MTB and their magnetic mineral inclusions, but focus mainly on the magnetosome formation and the magnetisms of MTB and bacterial magnetosomes, as well as on the significances and applications of MTB and their intracellular magnetic mineral crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号